Studying at The University of Western Australia is more than an education—it’s a total experience which gives UWA graduates a head start in their professional and social lives.

When you join UWA you are part of one of Australia’s best universities. The UWA experience starts with a commitment to quality at international standards of excellence. This is reflected in the high-standard of our students, staff and graduates.

Beyond academic excellence, the UWA experience includes access to some of the best facilities in Australia on a campus renowned for its social and sporting life. When you graduate, you will have lifelong friends, precious memories, and a sense of achievement that will empower you for the rest of your lives.

“UWA has more young, bright full-timers than any other university in the country. It is at the top of the WA academic ladder … the university of first preference among the top achievers …”
(The Good Universities Guide 2005)

“The proportion of UWA graduates accepted into full-time employment is higher than any other Western Australian university, and among the highest in Australia.”
(Graduate Destination Survey).

The UWA experience is much more than simply a training ground for employment, it embodies creativity and innovation, linking students with the wider world of learning and research. UWA graduates excel in all walks of life—as citizens within their communities and as innovators and leaders within business, industry and government.

We look forward to welcoming you to The University of Western Australia.

Professor Alan Robson AM
Vice-Chancellor

The University of Western Australia acknowledges that it is situated on Noongar land and that Noongar people remain the spiritual and cultural custodians of their land, and continue to practise their values, languages, beliefs and knowledge.
Contact Directory

For further information

Prospective Students Office and Admissions Centre
Location Hackett Hall
Opening Hours 9am to 5pm
Telephone (08) 6488 2477
Country Callers 1800 653 050 (cost of a local call)
Facsimile (08) 6488 1226
Email admissions@uwa.edu.au
Web site admissions.uwa.edu.au

School of Indigenous Studies
Location Shenton House
Opening Hours 9am to 5pm
Telephone (08) 6488 3428
Country Callers 1800 819 292 (cost of a local call)
Facsimile (08) 6488 1100
Email sis@sis.uwa.edu.au
Web site sis.uwa.edu.au

For international students

International Centre
Location Hackett Hall
Opening Hours 9am to 4pm
Telephone + 61 8 6488 3939
Facsimile + 61 8 9382 4071
Email international@uwa.edu.au
Web site www.international.uwa.edu.au

Contact the faculty for more specific course information

Faculty of Architecture, Landscape and Visual Arts
Location Architecture Building, Nedlands site
Opening hours 9am to 4.30pm
Telephone 6488 2582
Facsimile 6488 1082
Email alva.admin@uwa.edu.au
Web site www.alva.uwa.edu.au

Faculty of Arts, Humanities and Social Sciences
Location Arts Building
Opening hours 9am to 4.30pm
Telephone 6488 2091/2078
Facsimile 6488 1008
Email arts@uwa.edu.au
Web site www.arts.uwa.edu.au

Faculty of Economics and Commerce
(UWA Business School)
Location Student Centre, Law Link Building
Opening hours 8.30am to 5pm
Telephone 6488 2932/2803
Facsimile 6488 1068
Email studentcentre@biz.uwa.edu.au
Web site www.biz.uwa.edu.au

Faculty of Education
Location Education Building, Nedlands site
Opening hours 8.30am to 5pm
Telephone 6488 2388
Facsimile 6488 1052
Email gse@uwa.edu.au
Web site www.education.uwa.edu.au

Faculty of Engineering, Computing and Mathematics
Location Second Floor, Electrical and Electronic Engineering Building
Opening hours 9am to 4.30pm
Telephone 6488 3061
Facsimile 6488 1026
Email sub-dean.ecm@uwa.edu.au
Web site www.ecm.uwa.edu.au

Faculty of Law
Location Law Link Building
Opening hours 9am to 4.30pm
Telephone 6488 3792
Facsimile 6488 1045
Email law-fao@law.uwa.edu.au

Faculty of Life and Physical Sciences
Location First Floor, Physics Building
Opening hours 9am to 4.30pm
Telephone 6488 3396
Facsimile 6488 1058
Email dbettis@science.uwa.edu.au
Web site www.science.uwa.edu.au

Faculty of Medicine and Dentistry
Location N Block, Queen Elizabeth II Medical Centre
Opening hours 9am to 5pm
Telephone 9346 7323
Facsimile 9346 2369
Email (Medicine) medinfo@cyllene.uwa.edu.au
Email (Dentistry) dentinfo@cyllene.uwa.edu.au
Web site www.meddent.uwa.edu.au

Faculty of Natural and Agricultural Sciences
Location Central Wing, Agriculture Building
Opening hours 8.30am to 5pm
Telephone 6488 2565
Facsimile 6488 1002
Email science@fnas.uwa.edu.au
Web site www.fnas.uwa.edu.au
Contents

General Information

Welcome to UWA ... 1
Contact Directory .. 2
Why choose UWA? .. 4
Library ... 5
Student Guild .. 5
Child Care ... 5
UWA Sports ... 5
Student Services and Support 6
Fees, Charges and Financial Assistance 8
Awards and Scholarships .. 9
Living on Campus .. 10
Student Exchange .. 11
Studying in Regional Centres – Albany 12
Studying in Regional Centres – Geraldton 13
Admission .. 14

Course Information

Environmental Design and Architecture 16
Fine Arts .. 17
Landscape Architecture ... 18
Arts ... 19
Arts combined courses .. 20
Arts majors .. 21
Arts (Asian Studies) .. 26
Arts (Communication Studies) 27
Arts (European Studies) ... 28
Music ... 29
Social Work .. 31
Commerce .. 32
Economics ... 33
Commerce and Economics combined courses 34
Commerce majors ... 34
Economics majors ... 36
Education ... 38
Computer and Mathematical Sciences 40
Computer Science .. 41
Engineering .. 42
Engineering combined courses 45
Engineering programmes 45
Law ... 50
Dentistry ... 52
Health Science .. 54
Medicine .. 56
Podiatry .. 56
Science ... 58
Science combined courses 60
Science majors ... 61
Science (Advanced Science) 65
Science in Agriculture .. 66
Science in Animal Science 67
Science (Biomedical Science) 68
Science (Biophysical Science) 69
Science (Communication Studies) 70
Science (Conservation Biology) 71
Conservation Biology and Management 72
Science (Earth Science) ... 73
Science (Environmental Science) 74
Science (European Language) 75
Science (Exercise and Health Science) 76
Science (Genetics) ... 77
Science (Green Chemistry) 78
Science (Horticulture and Viticulture) 79
Science (Human Science) 80
Science (Informatics) .. 81
Science (Landscape Management) 82
Science (Marine Science) 83
Science (Mathematical and Statistical Science) 84
Science (Molecular Biology and Biotechnology) 85
Science (Nanotechnology) 86
Science (Natural Resource Management) 87
Science (Neuroscience) .. 88
Science (Physical Science) 89
Psychology .. 90
Science (Science Education) 91
New science courses for 2006 92
Diplomas ... 95
Courses and majors index 96
Graduating to success
UWA graduates are highly educated and highly employable. Our graduates are keenly sought by a range of employers and the University offers exciting opportunities for higher degree research programmes for those who want to ‘add value’ to their qualification and achievement.

Employers seek quality graduates
Employers actively search for quality when recruiting graduates. With UWA’s high entry requirements and the strength of its academic programmes, employers know that if they’re looking for talent, they can do no better than look to UWA graduates.

Each year many high profile employers, including some of the largest private sector companies such as BP and PricewaterhouseCoopers, as well as Commonwealth departments such as the Department of Foreign Affairs and Trade, actively target UWA graduates to work within their organisations.

Many of these companies, including Shell, Macquarie Bank and McKinsey & Company, find that the calibre of UWA students is so consistently high that they do not visit any of the other universities in Western Australia. Poynton Partners, a highly successful boutique corporate advisory management consulting firm, prefers to employ UWA graduates. A high proportion of their staff in both senior and entry level positions has been educated at UWA - in fact over half of their Australian work force are graduates from this University.

Almost every industry sector employs UWA graduates. The high quality of UWA graduates has enabled them to adapt readily to changes in technology and the work place, as well as reach senior positions in government, industry, the professions and the community.

Success in finding work
You will increase your chance of success in finding a better job with a UWA degree. Over the last six years UWA graduates have consistently been the best at gaining full-time employment when compared to graduates from other Western Australian universities and have matched or exceeded national graduate employment rates. The results of Graduate Destinations Surveys conducted annually clearly show the superior employment outcomes achieved by UWA graduates.

Financial rewards
Another measure of the value of the UWA degree in the career market might be the sort of starting salary that bachelor degree graduates could anticipate in their first full-time jobs. Again, statistics gathered in recent destinations surveys show that on average over the last six years UWA bachelor degree graduates have enjoyed a $1300 graduate starting salary premium compared to the national average.

Adding value to your degree
UWA recognises that the work force of the future will need a high level of transferable skills and the ability to adapt to changing technologies and practices. UWA’s international research standing offers graduates a huge range of opportunities to invest in their futures by undertaking further studies. When you finish your undergraduate degree, UWA offers the best prospect in this State of adding both financial and intellectual value to your qualification and achievement.

UWA’s success is underpinned by the value we put on the provision of undergraduate and postgraduate education, fully integrated with our research culture and activities.

We believe that teaching informed by knowledge gained by research and by the flow of information through international research networks is essential to maintaining our standing as an internationally competitive university.

You too can be one of UWA’s success stories
A degree from UWA will be a good investment for your future, financially and intellectually. You will receive a qualification from a university with an international reputation for producing graduates who are creative, original and enterprising with a world perspective and world vision.
Library

The University Library — the largest academic library in Western Australia — is one of UWA’s most valued resources. Through its networked services students enjoy access to a wealth of online resources as well as the Library’s print collections of over a million books, journals, and other research material. The Library’s collection is divided among a number of locations, both on and off campus, each catering for different areas of study. Highly professional and helpful staff are available to show students how to locate information and make full and effective use of the library. Study facilities in the Library include study areas, computers and software to assist students when consulting course materials, preparing essays, assignments and tutorials, and studying for examinations. New students will benefit from self-guided orientation tours and from guides relating to the use of the Library. More information about the Library is available on CygNETOnline, the Library’s Web Information Service: www.library.uwa.edu.au

Student Guild

The Guild is the representative body on campus which exists to help students get the most out of their time at University. The organisation is governed by the Guild Council, made up of students who are elected each year by students. The Guild was established in 1913 to provide representation and services to students. Benefits to Guild members include:

- representation of students’ interests to the University, State and Federal Governments and the community
- assistance with academic appeals
- advice on Austudy/Abstudy/Youth Allowance or other welfare issues
- Guild grants
- over 80 exciting clubs and societies covering social, cultural, religious, political and academic interests
- interfaculty sporting events
- emergency and general student loans
- special events (such as PROSH, Guild Ball and bands)
- commercial services on campus including food outlets and second-hand bookshop
- savings on food, entertainment and music off-campus

The Guild believes in student control of student affairs and all students are encouraged to become members of the Guild and get involved in student life and all that it has to offer. For more information about the Guild contact the Guild Student Centre on (08) 6488 2295.

Child Care

UWA Child Care Centre is licensed to provide care for 47 children on a full-time and regular part-time basis. A fee-reduction scheme, Child Care Benefit, is provided by Centrelink. The Centre operates from Monday to Friday 7.55am to 5.55pm. For further information contact the Director on (08) 9389 9511 or email daycare@acs.uwa.edu.au

For more information about any of the services offered by Student Services, please call us on (08) 6488 2423 or visit the web site at www.studentservices.uwa.edu.au

UWA Sports

A university education is about more than just getting good academic grades. A healthy body is a healthy mind and UWA Sports is committed to providing the University community with an outlet for all your sport and recreation needs.

From high intensity body combat and circuit classes to the controlled calm of yoga and pilates sessions, all your fitness needs are covered. You can also learn how to work in a bar, belly dancing, massage, get first aid qualifications or even discover the art of fencing through the many Recreate® classes offered. As a UWA Sports member you get access to a range of excellent benefits including discounts on:

- Fitness Centre membership
- Recreate® courses
- Sports shop products
- Physiotherapy
- Court hire including Australia’s largest clay court tennis complex

For more information visit www.sport.uwa.edu.au or call (08) 6488 2286.

10 things I love about UWA

2. THE OUTDOORS! There’s nothing like chilling out on the lawn by the Reid Library or in the Sunken Garden between classes. Sometimes classes are held outdoors in the sun. Both the buildings and natural environment of the Uni are beautiful and make for relaxing surroundings.
Services

Student Services

Beginning university involves a number of personal and academic changes and Student Services aims to assist you in maximising your opportunities while you are at UWA. Whether you’re looking for part-time work, a new place to live, free advice on academic, personal or career matters, or a new support network, Student Services can help you. Our friendly staff can also help you adjust to your new lifestyle which may be more independent than you have been used to. You will need to make an appointment to see staff in most instances and in accordance with relevant codes of professional practice, student consultations are confidential.

Your parents or guardians may also find our services reassuring and are welcome to contact us to learn how we can help you.

To find out how to make the most of our services, please visit Student Services on the second floor, South Wing, Guild Village between 9am and 5pm weekdays, call us on (08) 6488 2423 or check out the web site at www.studentservices.uwa.edu.au. We look forward to meeting you!

What we offer first-year students: the First-year Experience Programme

Your first year at UWA will be exciting and challenging as you settle in to uni life. To help your transition, the First-year Experience Programme includes Orientation which helps you get connected to the UWA community and find your way around campus before uni starts. It is followed by Link Week in week 3 of semester 1 which is focused on ensuring students are developing their support networks on campus. The First-year Co-ordinator is a point of contact to assist you with any problems or direct you to appropriate supports during your first year. As a prospective student, you are welcome to contact the First-year Co-ordinator on (08) 6488 3988 or firstyear.help@uwa.edu.au with any questions about starting uni at UWA.

Transition Support Programme

The Transition Support Programme (TSP) assists first-year students who may feel less familiar with the university environment (e.g. students who are the first person in their family to go to university, students from country areas and students who come from schools with a small Year 12 population) adjust to university life.

TSP also provides support for students who may be entering university after having a break from study, or who are juggling study and family responsibilities. TSP activities aim to help first year students settle in and feel at home on campus through developing their own support networks. Many of the TSP events such as the ‘Flying Start’ orientation programme, study groups and social events are led by former TSP students who can provide useful hints and ideas for adapting to university life.

As a member of TSP, you can access such services as:

- staff to assist or advise on academic and personal matters
- ‘Flying Start’ orientation programme
- student-run study groups specific to first-year units
- library and computer use demonstrations
- student-run social events
- regular interesting and informative newsletters

The Uni Mentor Scheme

This scheme gives commencing students the opportunity to link up with a more experienced student (a mentor) who is studying a similar course. This student will be able to provide support by answering the many questions you have about uni life, showing you around campus, making sure you know how to sign up for tutorials and labs and reminding you of important dates. All student mentors have been trained to undertake their role as mentors. They are available to you in the first year for as long as you feel the need to have contact with them.

Commencing students are matched with a mentor in a group with other new students and usually the first meeting of this group is on Host Day. The scheme is a great way of meeting new people and learning about how to get the most out of university life. If you would like more information about the scheme, contact the Uni Mentor Scheme Co-ordinator at unimentor@uwa.edu.au or visit www.mentor.uwa.edu.au.

Housing and Financial Aid

If you are looking for a new place to live, or would like advice about financial aid matters associated with university study, the Housing and Financial Aid officers are happy to help. They can provide assistance with:

- listings of rooms, flats and houses to rent in areas close to campus
- full board accommodation listings
- tenancy information and advice
- Youth Allowance/Austudy/Abstudy information
- Loans (University and Commonwealth funded)
- budgeting advice
- general information on education costs

Counselling services

Professionally qualified psychologists are available to help you with almost any of the usual problems that arise from:

- social development
- personal issues
- lifestyle and self-care
- autonomy and responsibility
- family and interpersonal relationships

Referral to other specialist services, both on and off campus is also available.

Chaplaincy

Students of various faiths and denominations are supported by pastoral care workers and through religious clubs and societies. Catholic and Anglican chaplains are on campus during the week. The Muslim Students Association invites Muslim students to attend the University Masjid.

University Medical Centre

The doctors and nurses here can assist you with general practice and nursing consults all of which are confidential. The Centre’s services include:

- emergency treatment of injury and illness
- management of common medical problems
- sexual health services, including contraception
- travel advice and vaccination
- health counselling including drug and alcohol counselling

10 things I love about UWA

3. MAKING FRIENDS! When you spend twenty hours a week in classes with people who have the same interests and the same goals you can not help but make friends. Uni is a great place to find people who share your ideas.
Students with disabilities

Students with disabilities and medical conditions can access a range of services and facilities while studying at UWA. These services include:
- additional library services
- advice and advocacy
- access parking permits
- loan of specific equipment
- experienced disability officers
- an accessible resource room with ergonomic furniture and resting facilities
- course accommodations
- lecture recording

If you are thinking of studying at UWA and have a disability or medical condition, we encourage you to contact the Disability Officers before the academic year begins.

Learning, Language and Research Skills Service

The Learning Skills Advisers offer workshops, individual consultations and a library of books and tapes related to all aspects of learning at University. The workshops cover:
- writing assignments
- exam preparation strategies
- lectures and note-taking
- efficient reading
- managing time and study
- speaking

Workshops are offered in separate streams for Arts/Humanities and for Science/Applied Science students. There is also a separate stream for students who feel they need extra support with learning in English. Visit the web site at www.studentservices.uwa.edu.au/ss/students/learning/ for details of services offered.

Support

The Careers Centre

Prospective students can access, either via the Web or by visiting the Careers Centre library, a rich range of information on a range of topics including:
- career decision-making
- graduate career options
- private and public sector employers of graduates
- graduate destinations data

The Careers Centre computer terminals can also be used to access our own web site (www.studentservices.uwa.edu.au/careers_centre/) as well as a variety of tools to help students think about their future careers — OZJAC (a national course and careers database), Gradlink (a web site at www.gradlink.edu.au for reviewing graduate opportunities and job-seeking information) and My Future (a web site at www.myfuture.edu.au for exploring career options).

Once you are an enrolled UWA student, the Careers Centre can further enhance the prospect of your university studies leading you to an exciting career by:
- providing assistance to make career decisions
- conducting seminars and workshops to help you enter the work force
- organising visits to campus by employers of graduates
- publicising vacation and graduate job opportunities both locally and overseas
- providing a casual/part-time employment service
- assisting you to develop effective job-seeking techniques and strategies
- advising you on further study opportunities
- researching and reporting on the destinations of graduates.

10 things I love about UWA

4. **UNI IS ALWAYS ALIVE!** There are events on all the time, from simple things like Market Day (every Tuesday) and sports comps through to concerts, faculty formal balls and the infamous Prosh. Uni is always pumping with activity.
Fees and Charges

Tuition Fees
- Australian citizens and holders of permanent humanitarian visas who enrol as a Commonwealth Supported Student make a contribution to the cost of their course. You can choose either to pay the contribution directly to the University, thereby qualifying for a discount, or defer the cost via an income contingent loan provided by the Commonwealth Government. This loan is known as HECS-HELP.
- New Zealand residents and other Australian permanent residents who enrol as a Commonwealth Supported Student also make a contribution to the cost of their course but must pay the fee directly to the University. They cannot qualify for the discount and are not eligible to defer the cost.
- Students who enrol in undergraduate degrees as Australian fee-paying students pay a higher tuition fee. Australian citizens and holders of permanent humanitarian visas are eligible for a Commonwealth Government income contingent loan to pay tuition costs. This loan is known as FEE-HELP. New Zealand citizens and other Australian permanent residents are not eligible for FEE-HELP and must pay their tuition fees in full directly to the University.

For more information visit www.hesa.uwa.edu.au.

Amenities and Services Fee
In addition to your tuition fees, you also pay a separate Amenities and Services Fee which finances a range of activities and services for all UWA students. The annual fee for a full-time student in 2005 was $120. Visit www.studentadmin.uwa.edu.au/welcome/fees/ for more information.

Other costs and expenses
Other than your tuition fees, you may also need to consider other costs, such as accommodation, public transport, health and dental care, recreation and entertainment, photocopying, printing and stationery, text books, clothing and other personal items. For more information about the cost of living visit www.studentservices.uwa.edu.au.

Financial assistance
The University’s Financial Aid Officers offer free and confidential advice and information on a wide variety of financial issues relevant to students, including:
- Centrelink benefits
- Health Care Cards
- Budgeting
- OS-HELP for students wanting to study overseas for a period of time
- The UWA Student Loan Scheme

Money matters

10 things I love about UWA

5. THE RESOURCES AVAILABLE At some point at university you have to do some work and when you do, it isn’t hard to get access to everything you need. Computers with Internet access, lab equipment, huge journal and library collections are all available at almost all hours of the day or night. New options are available such as recorded lectures and iLectures; if you’ve missed a class you can catch up from home over the Internet.
Awards and scholarships

The University of Western Australia has a long tradition of promoting, recognising and rewarding merit and excellence within our community, and has a strong commitment to equity and access for students able to benefit from studying at UWA. Details of the following awards and scholarships can be found at www.scholarships.uwa.edu.au, or contact the Prospective Students Office for more information.

UWA–Fogarty Foundation Undergraduate Awards and Scholarships Programme

As a result of an initiative of the Fogarty Foundation, a philanthropic trust which supports excellence and encourages individuals to realise their potential, the University, in partnership with the Foundation, has recently extended its undergraduate scholarships programme. The programme currently comprises the following scholarships and awards:

- **UWA–Fogarty Foundation City and Regional Scholarships**
 A number of Regional Scholarships covering Student Contribution fees, ancillary costs and accommodation costs, as well as a number of City Scholarships covering Student Contribution fees and ancillary costs, are offered to senior secondary students who show significant academic potential together with a strong sense of community involvement and responsibility.

- **Group of Eight Scholarships at UWA**
 Four scholarships covering Student Contribution fees for the duration of each recipient's degree are awarded on academic merit to students who have succeeded academically despite financial constraints.

- **Vice-Chancellor's Awards of Distinction**
 Five awards of $4000 each are made to students who demonstrate excellence not only in their academic studies, but also in some other aspect of their lives.

- **UWA Diversity and Merit Awards**
 Sixteen awards of $2000 each are made on merit to students coming from specific equity groups.

- **UWA Excellence Awards Programme**
 One award is offered to each senior secondary school in the State, guaranteeing a place at UWA on the basis of school nomination rather than TEE results. The recipient is identified by his/her school as the student most likely to succeed at university.

Other Scholarships

- **UWA SWANS SCHEME (Scholarships to Widen Access for New Students)**
 The UWA SWANS Scheme is designed to assist students from socio-economically and educationally disadvantaged backgrounds to undertake tertiary study at UWA. In 2005 the University offered 200 scholarships valued at $2000 p.a. to students commencing the first year of their first undergraduate degree.

- **Commonwealth Learning Scholarships Programme**
 The Commonwealth Learning Scholarships (CLS) are part of the Commonwealth Government’s Higher Education Reforms and are intended to assist undergraduate students from low socio-economic backgrounds, Indigenous students and students from rural and regional areas, with costs associated with higher education. There are two types of scholarship:
 - Commonwealth Education Costs Scholarships (CECS), valued at $2042 in 2005 for up to four years; and
 - Commonwealth Accommodation Scholarships (CAS), valued at $4084 in 2005 for up to four years.
 For the 2005 academic year, the Department of Education, Science and Training provided UWA with 94 CECS and 72 CAS to award.

There are many other awards and scholarships for which UWA students are eligible to apply. Check the Scholarships Office web site at www.scholarships.uwa.edu.au/home/undergrad/.

10 things I love about UWA

6. INTERNATIONAL RECOGNITION

UWA is one of the oldest universities in Australia and is recognised for its excellence around the world. Being a member of the Group of Eight Universities in Australia is an added bonus further strengthening the recognition of my degree. In final year we have already had industry recruiters approach myself and friends about graduate opportunities.
Living on campus

Students enrolled at the University enjoy a range of accommodation alternatives. They may choose to live on campus in one of the attractive colleges or opt to rent rooms, flats or houses close to the University. These options can reduce travelling time and allow for greater use of the library and other facilities in the evenings and over weekends.

As a guide, some examples of weekly costs for different types of accommodation in 2005 are:
- Full board (limited) $160 to $180, usually with a family, meals included
- Room and use of cooking facilities $80 to $110. Utilities, phone and meal costs extra.
- Shared flat or house $80 to $110, usually your own room with shared bathroom, kitchen and living areas. Utilities, phone and meal costs extra.
- Unfurnished one or two bedroom unit close to campus $120 to $180.
- Colleges (average) $245 includes 21 meals per week and utilities. Phone costs extra.

It must be noted that accommodation costs can vary greatly and the above prices should be viewed as a general guide only. The college figures are based on actual time in residence (i.e. usually 34 weeks). In comparing college costs to off-campus accommodation costs, it should be borne in mind that it is often necessary to pay for off-campus housing during the vacation periods even if students elect to return home during these periods.

The Housing Officer at Student Services maintains lists of rooms, flats and houses available for rent in areas surrounding the campus and provides a wide range of information and advice for students on tenancy and related matters. Telephone: (08) 6488 3547, email: housing@uwa.edu.au or www.studentservices.uwa.edu.au/information_for/students/life/housing/.

College life gives students an immediate sense of belonging and an instant circle of friends. Students living in colleges may also benefit from the assistance of resident tutors and the support of pastoral care. Detailed information regarding facilities, accommodation rates etc. is available from the individual colleges.

10 things I love about UWA

7. GREAT SUPPORT FOR STUDENTS especially in the first year through the Transition Support Programme where students from smaller and rural schools have more opportunities to get to know each other. The Mentor Scheme in the first year was also invaluable for me. I had a third-year student mentor who I could get in touch with to answer any question I had and just help me out with getting my head around uni. It’s completely different to high school.
Where can I study?
Exchange programmes have been established on a University-wide basis with institutions in many parts of the world. Universities currently available are:
- Indiana University, USA
- Malardalen University, Sweden
- McGill University, Canada
- National University of Singapore
- North Carolina State University, USA
- Norwegian University of Science and Technology, Norway
- Pennsylvania State University, USA
- Purdue University, USA
- Queens University, Canada
- RWTH Aachen, Germany
- Royal Holloway and Bedford New College, University of London, UK
- Simon Fraser University, Canada
- Università di Bologna (University of Bologna), Italy
- Università degli Studi di Milano, Italy
- Universität Koblenz-Landau (University of Koblenz-Landau), Germany
- Universiteit van Amsterdam, Netherlands
- Universiteit Koblenz-Landau, Germany
- Universiteit van Limburg, Netherlands
- University of Bath, UK, Human Movement
- University College London, UK
- University of Glasgow, UK
- University of Leicester, UK
- University of Michigan, USA, Science, Arts
- University of Missouri-Rolla, USA, Engineering
- University of Ottawa, Canada, Law
- University of Passau, Germany, Law
- University of Wales Institute Cardiff, UK, Human Movement
- University of Waterloo, Canada, Engineering, Computing and Mathematics
- University of the Witwatersrand, South Africa, MBA
- Vienna University of Economics and Business Administration, Austria, Economics and Commerce
- Vrije Universiteit, Netherlands, Economics and Commerce
- WHU Otto Beisheim Graduate School, Germany, MBA

Who is eligible?
Any enrolled student who has completed at least one year (48 points) of study at UWA, who has an overall weighted average of 65 per cent or higher, and who will be a good ambassador for UWA and Australia may apply for the exchange programme.

What does it cost?
Students are enrolled at UWA, so do not pay tuition fees at the host institution, but must pay airfares, accommodation and other expenses. Austudy/Abstudy/Youth Allowance payments will continue under certain conditions. Scholarships and bursaries are available.

How to find out more?
Visit the Study Abroad Office, International Centre, located next to the Hackett Hall Coffee Lounge or telephone (08) 6488 8199, email: studyabroad@admin.uwa.edu.au or visit www.international.uwa.edu.au.
Why study in Albany?
Using the best principles of flexible delivery, the Albany centre offers students a ‘high-tech, high-touch’ learning environment. i-Lectures allow Albany students to experience lectures delivered in Perth over the Internet, while small classes led by well-qualified local tutors balance technology with face-to-face interactive teaching and learning.

The centre is a small, friendly learning community with a range of support services. A number of awards and scholarships are also available for prospective and enrolled students. It can be an excellent transition year for school leavers to commence university without the added stress and expense of moving to the big city.

City-dwellers can also experience all that regional WA has to offer while completing their first year of university studies. Located in Albany’s historic Old Post Office building, the centre offers excellent computing facilities, after-hours access, spectacular harbour views and a student common room.

What can you study?
A full first-year enrolment in a range of degrees and a full Bachelor of Arts degree are available. For information regarding prerequisites, see each degree’s outline in this book.

NEW FOR 2006 — you can study a Bachelor of Science (Restoration Ecology), available only at the Albany campus.

<table>
<thead>
<tr>
<th>Course</th>
<th>2005 minimum TER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>80.00</td>
</tr>
<tr>
<td>Agriculture/Commerce</td>
<td>80.00</td>
</tr>
<tr>
<td>Agriculture/Economics</td>
<td>80.00</td>
</tr>
<tr>
<td>Animal Science</td>
<td>80.00</td>
</tr>
<tr>
<td>Arts</td>
<td>80.00</td>
</tr>
<tr>
<td>Arts (Communication Studies)</td>
<td>80.00</td>
</tr>
<tr>
<td>Arts/Commerce</td>
<td>90.00</td>
</tr>
<tr>
<td>Arts/Economics</td>
<td>90.00</td>
</tr>
<tr>
<td>Arts/Science</td>
<td>90.00</td>
</tr>
<tr>
<td>Commerce</td>
<td>80.00</td>
</tr>
<tr>
<td>Commerce/Economics</td>
<td>90.00</td>
</tr>
<tr>
<td>Computer and Mathematical Sciences</td>
<td>80.00</td>
</tr>
<tr>
<td>Computer and Mathematical Sciences/Commerce</td>
<td>83.00</td>
</tr>
<tr>
<td>Computer and Mathematical Sciences/Economics</td>
<td>–</td>
</tr>
<tr>
<td>Computer Science</td>
<td>80.00</td>
</tr>
<tr>
<td>Conservation Biology and Management</td>
<td>80.00</td>
</tr>
<tr>
<td>Economics</td>
<td>80.00</td>
</tr>
<tr>
<td>Education (combined courses)</td>
<td>80.00</td>
</tr>
<tr>
<td>Health Science</td>
<td>80.00</td>
</tr>
<tr>
<td>Health Science/Commerce</td>
<td>90.00</td>
</tr>
<tr>
<td>Health Science/Economics</td>
<td>90.00</td>
</tr>
<tr>
<td>Horticulture and Viticulture</td>
<td>80.00</td>
</tr>
<tr>
<td>Natural Resource Management</td>
<td>80.00</td>
</tr>
<tr>
<td>Restoration Ecology</td>
<td>N/A</td>
</tr>
<tr>
<td>Science</td>
<td>80.00</td>
</tr>
<tr>
<td>Science/Commerce or Science/Economics</td>
<td>90.00</td>
</tr>
</tbody>
</table>

Ellen Weetman
As a school leaver, moving to Perth to begin my university degree was quite a daunting prospect and was not a step I was ready to take. I was overwhelmed by the expectations of university life, whilst living in an unfamiliar environment.

Studying at UWA Albany Centre has given me the opportunity to learn in an encouraging environment with my tutors, lab demonstrators and staff members sincerely caring about my progress and welfare.

"Small tutorial groups and lab classes have provided the ideal environment for a smooth transition into university life from the school environment."

I am studying a combined degree in Agriculture/Economics. I chose this course because it combined two areas of study that I enjoy and provides me with more options. After almost completing my first year I have found that my units have given me a taste for a wide range of subjects and allowed me to develop my interests in these areas. A combined degree in Agriculture/Economics has allowed me to pursue my interest in science and combine it with statistics, maths and economics.

For further information contact:
The UWA Albany Centre
PO Box 5771, ALBANY WA 6332
Phone: (08) 9842 0888
Fax: (08) 9842 0877
Email: Albany.Centre@uwa.edu.au
Web: www.albany.uwa.edu.au

10 things I love about UWA

9. A HUGE VARIETY OF COURSES Even with a single degree there are dozens of pathways and graduates come out with excellent all-round skills. UWA also offers a lot of practical components giving you work experience you’ll be glad of when you go looking for a real job.
UWA PROMOTES AWARENESS AND UNDERSTANDING OF DIVERSITY in multiculturalism, sexuality and religious differences through special events and awareness weeks. It was such an open-minded approach compared to school — it gives you the chance to learn more about the lives of people who are different to you.

10 things I love about UWA

10. UWA PROMOTES AWARENESS AND UNDERSTANDING OF DIVERSITY in multiculturalism, sexuality and religious differences through special events and awareness weeks. It was such an open-minded approach compared to school — it gives you the chance to learn more about the lives of people who are different to you.

Glenn Beall

I’ve always been into computers so it made sense for me to study what I love. I started off in an external course through another university but found that the lack of contact with lecturers and other students meant I wasn’t getting the feedback and exchange of ideas integral to university study.

At Geraldton Universities Centre (GUC) I have enjoyed the contact with my UWA tutor and have learnt a lot from his diverse experience. I have also had the opportunity to study units which I would not have previously considered, such as philosophy. While I was sceptical at first I have found this unit very interesting and a valuable addition to my degree.

GUC has great facilities and offers one-on-one support for local students. I have received two scholarships in my two years of study at GUC, as local organisations offer generous scholarships to students who want to study locally.

I am planning to move to Perth to continue the third year of my degree at UWA. My future plans include participating in UWA’s student exchange programme, giving me a chance to learn the French language while living in France.
Getting in

School leaver applicants
The majority of candidates applying to enter UWA in 2006 will qualify to do so by taking the Western Australian Tertiary Entrance Examinations (TEE). This can either be as a Full TEE or as a Mature-age TEE.

Full TEE
If a student will be less than 19 years of age on 1 March 2005, they will be required to sit a ‘Full TEE’ in order to have a Tertiary Entrance Rank (TER) calculated. To be considered for admission to UWA in 2006 students must:
• meet the Curriculum Council’s requirements for Secondary Graduation;
• establish English language competence by attaining a scaled score of at least 50 in TEE English or English Literature (or by obtaining an appropriate pass in Year 12 English as a Second Language (ESL));
• achieve a satisfactory standard in the appropriate prerequisite subjects; this requirement will normally be met by attaining a scaled score of 50 or more in the appropriate subject;
• achieve a TER calculated using the best four or five Tertiary Entrance subjects taken over a maximum of two consecutive years, at least one of which must be from List 1 and another from List 2; and
• obtain a sufficiently high TER to gain a place in the course.

If students obtained a TER in 2001–2004, and they have never undertaken any tertiary study, they will still be considered a school leaver if they lodge an application for admission in 2006.

Mature-age TEE
If a student will be 19 years of age or over by 1 March 2005, they are eligible for ‘Mature-age’ entry. If they have never undertaken any tertiary study there are two ways to be considered a ‘school leaver’ for admission in 2006. Students could take a ‘Full TEE’ as described above (except that they will be exempt from the Secondary Graduation requirement), or they might take the ‘Mature-age TEE’, otherwise known as the ‘Two subject + STAT’ option. To be considered for admission using a Mature-age TEE students must:
• meet the University’s English competence requirement by obtaining a minimum score of 150 in the STAT Multiple Choice (Verbal Component) and 145 in the STAT Written English test;
• complete two TEE subjects in one year from List 1 and/or List 2;
• satisfy the TEE prerequisites for entry to a particular course; and
• obtain a sufficiently high TER to gain a place in the course.

If students obtained a Mature-age TER in 2001–2004 and they have never undertaken any tertiary study, they will still be considered a school leaver if they lodge an application for admission in 2006.

Interstate/New Zealand/International Baccalaureate Diploma Applicants
If a student has completed Year 12 in another state of Australia, or the NCEA (National Certificate of Educational Achievement) in New Zealand Bursaries, or the International Baccalaureate Diploma in 2001–2005, and they have never undertaken any tertiary study, they will be considered a School Leaver. Students will compete for a place on the basis of their scores in the normal university entrance examinations. Students must achieve a satisfactory standard in a TEE-equivalent English subject and all prerequisite subjects for their course, as specified by the UWA Admissions Centre. Please note that an offer of a place at another university does not guarantee an offer of a place at UWA.

Non-school leaver applicants
A student will be considered as a non-school leaver (or Non-standard applicant) if they have ever undertaken any tertiary study (diploma or above) or any of the following:
• Special Tertiary Admissions Test (STAT) as their only qualification;
• AQF/TAFE qualification;
• school leaver qualification shown above, but it was gained prior to 2001;
• overseas school qualification (except the NCEA or NZ Bursaries and IB Diploma);
• tertiary qualification; or
• vocational qualification.

If a student is a non-school leaver they will be considered for entry on an individual basis by Faculty Selection Committees. The student will be competing for a place against applicants with a wide range of qualifications.

Special Tertiary Admission Test (STAT)
If a student is aged 19 years or over by 1 March 2005 and they have never undertaken any tertiary study they may be eligible for admission to courses in the Faculty of Arts, Humanities and Social Sciences or the Faculty of Architecture, Landscape and Visual Arts if they obtain good results in the STAT. Entry by this route can be very competitive, so it is likely that they will need more than the minimum marks to gain admission. The STAT is an approved test of English, so students will also meet the English language competence requirement if they achieve satisfactory results. The STAT is run by TISC (www.tisc.edu.au) in Western Australia.

Applicants with AQF/TAFE Qualifications
If a student has AQF/TAFE qualifications at diploma level or above they will be considered for entry to all courses. Selection is based on academic merit. Entry by this route can be very competitive. Where possible the student should try to obtain grades or percentage marks for each module studied. Before undertaking TAFE study as a pathway to university entry, prospective students are advised to contact the Prospective Students Office.
Other Qualifications
A student's application will be considered on an individual basis by Faculty Selection Committees if they have other qualifications, including:
- overseas high school
- tertiary (university) study
- vocational study

Remember — students are required to demonstrate satisfactory performance in an approved test of English, as well as satisfy course prerequisites.

Applications
Australian and New Zealand citizens and Australian permanent residents should apply for any of the courses described in this booklet through TISC by Friday 30 September 2005. The only exceptions to this are:
- Medicine and Dentistry (first year): in addition to applying for a place through TISC by Friday 30 September 2005 students must register for the Undergraduate Medicine and Health Sciences Admission Test (UMAT) which will be held on Wednesday 27 July 2005. Registration for the UMAT (www.acer.edu.au/tests/university/) closes 5pm (AEST) Friday 10 June 2005. Late applications for UMAT will be accepted up until Friday 24 June, however a fee applies. Late applications through TISC will not be accepted.
- Medicine and Dentistry (second or higher years): contact the Faculty of Medicine and Dentistry on (08) 9346 4620 for more information.
- Music: all students applying to study music at UWA are auditioned by the School of Music. Auditions are held in October and November each year. To arrange an audition, please call the School of Music on (08) 6488 2051.
- Diploma in Modern Languages, Diploma in Arts, Diploma in Information Technology and Diploma in Music: applications should be made to the appropriate faculty at the time of enrolment in a UWA undergraduate degree course.

International students
International students completing the TEE are required to meet the admissions criteria for Australian students. Please note that the Tertiary Entrance Rank cut-off may be higher in some courses than those shown for Australian students, as there is a separate quota of places for international students. Applications are available from the UWA International Centre (see page 2 for contact details).

Credit transfer
Applications for credit transfer are assessed individually. Contact the appropriate faculty adviser who will be able to provide more information (see page 2). Please note that the gaining of credit for previous academic work is a separate process from selection and admission to the University.

Indigenous students
The School of Indigenous Studies provides the opportunity for indigenous applicants, with a wide variety of educational backgrounds who do not meet the standard admission requirements outlined in this book, to study at the University. For information on the Provisional Entry Scheme, the Aboriginal Orientation Course and the Aboriginal Pre-Law and Pre-Medicine programmes, contact the School of Indigenous Studies (see page 2).

UWay
School leaver applicants and applicants doing Mature-age TEE who believe their academic achievements in Year 12 have been adversely affected by certain disadvantages may apply for special consideration through the UWay scheme. These disadvantages include:
- rural isolation
- lack of a supportive study environment at home
- having to care for family members
- having to engage in excessive part-time employment to help with the family income
- disruption of education due to frequent family relocation or difficult migrant passage
- a period of illness, which is now over or abating

UWay application forms are available from school principals in August. UWay applications for students applying for Medicine or Dentistry close on Monday 31 October 2005. For all other courses, UWay applications close Wednesday 30 November 2005.

Special circumstances/appeals
The Appeals Group of the University's Admissions Committee will consider exceptional cases on an individual basis prior to each round of offers. Students will be required to submit extensive documentary evidence of the special circumstances that have affected them. All documents must be submitted by 2 January 2006 for the first round of offers, and by 20 January 2006 for the second round of offers. For TEE students, the basis of the appeal would usually be outside the scope of a Sickness and Misadventure Committee claim, or be too late for a Uway application.
Bachelor of Environmental Design/ Bachelor of Architecture

Length of Course Bachelor of Environmental Design – 3 years
Bachelor of Architecture – 2 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students). No other formal prerequisites, but mathematics, physics, art or any other humanities subjects are useful background subjects

2005 minimum TER 86.00

Intake Period February and July

Weekly first-year time commitment 15 to 18 hours plus own study time

What’s it about?
The study of architecture provides a rich combination of experiences in imaginative creativity, the humanities and the sciences. It is an intense, enjoyable programme which requires the development of an individual viewpoint and an understanding of how the values of society affect the production of architecture. In addition to the design of individual buildings, the discipline of architecture is seen to include urban design and all aspects of the designed environment. The Faculty also teaches a course in Landscape Architecture and a strong relationship with this discipline is encouraged through elective studies and design studios. Students are prepared for entry into the profession and are capable of practising architecture worldwide.

Career Opportunities
Architects are concerned with the built environment and as professional advisers to the community, offer their skills in the development and design of projects within accepted budgets and standards. They are expected to supervise the erection and construction of buildings, the administration of contracts and the nomination and co-ordination of consultants, and to represent clients in their dealings with authorities and contractors.

Architects may become research specialists, using their initial academic training as a preliminary to further postgraduate study or as a foundation for careers in landscape architecture, city and regional planning, environmental studies, or graphic and visual arts.

Course Requirements
The full professional Architecture course comprises the two degrees of Bachelor of Environmental Design (BEnvDes), and the Bachelor of Architecture (BArch). This constitutes a minimum of five years of full-time study with a required 16-week period of approved professional experience. Design studio units form the basis of architectural education at UWA.

Bachelor of Environmental Design (BEnvDes)
In the three years of the BEnvDes degree, students enrol in a total of six studio units. Level 1 students would be expected to develop an awareness of an elementary range of design strategies and to demonstrate a basic competence in simple communication skills. Students should demonstrate at a conceptual level a capacity to analyse buildings from the point of view of form, space, structure, function and culture; together with an understanding of an elementary architectural vocabulary and its usage. Students also study Art and Architectural History, Architectural Science and Computing, and Technology and Structures.

Levels 2 and 3 students should continue to develop a capacity to analyse and interpret buildings.

Bachelor of Architecture (BArch)
Admission to the Bachelor of Architecture requires completion of the BEnvDes (or equivalent) at a satisfactory level. Before completion of the Bachelor of Architecture, students must complete a mandatory 16 weeks of approved professional experience. This is designed to enable students to gain some practical experience in an area associated with the professional practice of architecture, in an architectural office or in an approved building environment.

Levels 4 and 5 students in the BArch programme will demonstrate an increasing awareness of the range and scale of architectural decision-making and a growing competence in design resolution; they would be expected to reach the level of final/detail design and to handle an increased array of design problems. Mastery in all areas of science, technology, professional practice and theory must be evidenced in design work. Core units include studies which provide the necessary base of knowledge in the architectural areas of history, theory, technology, science, structures and practice to meet professional standards. Optional units allow students to pursue areas of particular interest.

Nick Kletnieks

“Part way through the architecture course, the way you perceive and regard the world around you changes irretrievably.”

I guess it’s the way the course pushes you to really see what is around you, and develops the ability to judge how your designs will affect the way a space is lived in and perceived. It’s a course with a strong emphasis on design and as such you spend much of your time in studio, developing your projects from the first rough sketches, often initially of an idea rather than a building, which are refined over the course of a semester into a highly developed scheme. It is this process of working over and working in details that makes this such a rewarding but also time-consuming course. This process of refinement and the provision of 24-hour studio space results in a building that is always alive.

At the same time your critical abilities are developed as you question your own design decisions and the positions taken by others. Skills in drawing, modelling and computer-based techniques are developed both as tools in the design process itself and as means of communicating your ideas.

I’ve been working for half a year now on multi-residential work, which has added a better appreciation of the practicalities of built works and added the pleasure of seeing a design you have worked on being built!
Bachelor of Fine Arts

Length of Course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students). No other formal prerequisites, but a strong interest and ability in creative activity is recommended.

2005 minimum TER 80.00 (Commonwealth supported)
80.00 (Australian fee-paying)

Intake Period February and July

Weekly first-year time commitment 15 to 18 hours plus own study time

What’s it about?
The study of Fine Arts offers a rich range of historical, critical and theoretical studies based around a core and studio-based programme. Studio-based units comprise traditional and new technology areas. A wide range of units on the history and theory of visual culture are available for students to choose from. The School is well known for the high quality of its history and theory units, which can be taken as a Fine Arts major within a BA degree.

The School also has a strong and active postgraduate programme, and enjoys a close relationship with SymbioticA, a highly successful and innovative art studio in the University that practises and researches at the nexus between art and science.

Fine Arts at UWA is a small, flexible, well-resourced and innovative programme that sits beside and interacts with larger programmes in architecture and landscape architecture. Students enjoy a close and very supportive relationship with committed teachers.

Career Opportunities
Bachelor of Fine Arts (BFA) graduates are equipped to work as art practitioners and within art galleries, museums, community arts and cultural organisations, teaching institutions, new technologies and the media. Upon successfully completing a further year’s study in the honours programme, they will also have a sound basis on which to undertake postgraduate studies in Fine Arts.

Course Requirements
The BFA offers an innovative course of study in which 50 per cent of each student’s time is devoted to studio practice and 50 per cent to theoretical and critical studies.

LEVEL 1
Fine Arts Practice [Electronic Art and Studio Art]
History and Theory of Visual Art and Culture
Fine Arts Technology

LEVEL 2
Fine Arts Practice [Electronic Art or Studio Art]
Fine Arts Technology
History and Theory of Art
and/or
Architecture/Landscape Architecture elective studies

LEVEL 3
Fine Arts Practice [Electronic Art or Studio Art]
History and Theory of Art
and/or
Architecture/Landscape Architecture elective studies

My passion for art and creativity has been with me since my earliest recollections. However, when I left high school I was still unsure of what I wanted to do; my passion lay in art, but I had achievements in IT, languages and science. I was also unsure of the career paths available for those with artistic talents.

Studying the BFA allowed me to combine all these interests through my works. It has been a truly wonderful experience. I started at uni not knowing anyone as I was from interstate; I found the UWA environment amazing in the wealth of experiences it offers.

The BFA in particular provides a close-knit nurturing yet challenging environment in which talent and interpersonal relationships can flourish.

This sense of community is strong and spans across students and their lecturers.

There is a diversity of choice in the degree, which is channelled through two specialised streams: traditional and electronic art. I chose to pursue electronic art and this allowed me to immerse myself in the experience of digital media including film, sound, digital photography, multimedia and graphic design.

I found the solid theoretical base in the degree to be invaluable as it provided a strong conceptual framework for my practical works.

Through studying the BFA I have found there are many jobs available in this field and I am now working as a practising artist and graphic designer, and hope someday to work in digital film post-production.

Visit the Architecture, Landscape and Visual Arts web site at www.alva.uwa.edu.au
Bachelor of Landscape Architecture

Length of Course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students). No other formal prerequisites, but mathematics, geography, art and biology are useful background subjects

2005 minimum TER 80.00

Intake Period February and July

Weekly first-year time commitment 15 to 18 hours plus own study time

What's it about?
Landscape Architecture is primarily a design discipline concerned with the quality of the environment. Landscape architects work on a variety of scales, ranging from major regional projects to urban developments which include industrial, commercial, institutional, recreational and residential environments. The scope of their work includes: all aspects of landscape and land use planning, design and management; the restoration and rehabilitation of disturbed environments; the identification and assessment of environmental and social impacts associated with a variety of public and private developments; and the design and management of outdoor spaces to create exciting, functional and attractive environments which will contribute to the quality of life of the community. Common to all this work is the ability to understand natural systems and their interactions with human activities.

Career Opportunities
Public emphasis on preserving the natural environment and minimising the impact of potential developments has increased employment opportunities for landscape architects — both in private practice and with state, federal and local government agencies. With experience, graduates may also have opportunities to work as consultants or as members of multidisciplinary project teams that may include other professionals such as architects, sociologists, planners, engineers and geologists. The profession has, in recent years, gained both stature and recognition worldwide.

Course Requirements
The Bachelor of Landscape Architecture (BLArch) is a four-year, full-time professional course. Students in the BLArch are required to complete 16 weeks approved professional experience.

LEVEL 1
Design
History and Theory of Art, Architecture and Landscape Architecture
Technology and Structures
Computing and Architectural Science

LEVELS 2 AND 3
Design
History and Theory of Landscape Architecture
Technology
Computing
Ecology
Research Seminar
Plants

LEVEL 4
Design/Design Honours
History and Theory of Landscape Architecture
Landscape Architecture Professional Practice
Architectural Elective Studies/Honours Dissertation

For the greater part of my adolescence I drifted between art courses and odd jobs until the Bachelor of Landscape Architecture was recommended to me by a family member.

“The course appealed to me because it offered a creative and socially relevant direction.”

So I went to night school for a year, got my TEE and was accepted in 1998.

In my time at UWA I found an environment in which theory and practice are critically engaged. The course is unique in that it draws from a range of academic fields including the Sciences and the Arts resulting in a study of landscape that is both practical and rewarding beyond the vocational dimensions of the discipline.

Since graduating I have been living in Sydney working on a range of projects from master planning on the Harbour foreshore to the design of inner-urban courtyards. The broad range of landscape topics that I encountered at UWA has been invaluable to me whilst working at these varying scales.

The course at UWA offers arguably the best introduction to the growing potential of contemporary Landscape Architecture, a young profession that is in many ways still defining itself, both in theory and in relation to the landscapes in which we live.
Bachelor of Arts

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students). Plus, some majors have additional prerequisites. Contact the Admissions Centre for details.

2005 minimum TER 82.00 (Commonwealth supported)
80.00 (Australian fee-paying)

Intake Period February and July

Weekly first-year time commitment 16 hours plus own study time

What’s it about?
The Bachelor of Arts (BA) degree will equip you for every aspect of the rest of your life. It enables you to find your talents, interests and abilities and develop them fully. You will find the skills you acquire during your BA applicable to, and valuable in, many aspects of life.

Employers are increasingly on the lookout for an innovative and creative workforce. They are seeking people who can think critically, and who can research, develop, analyse and communicate ideas in a world of technological, economic, political and social change. Arts graduates are ideally placed for taking up this challenge with their ability to reason, to conduct research and to communicate effectively. They are also able to think creatively, understand concepts and communicate them well and use problem-solving techniques, making them an asset to any business or organisation.

Career Opportunities
UWA Arts graduates enter a range of careers, from journalism and the media, international relations and politics, to teaching and education, music, fine art and arts administration, community and social work, as well as business and the public service, carrying out policy, research or administrative work.

Our graduates have also gone on to make a strong mark in the media, with numerous graduates working for some of the most prestigious local, national and international newspapers, television and radio corporations.

An Arts degree from UWA is recognised internationally and a significant proportion of our graduates are employed overseas, in a variety of areas.

Course requirements
Level 1 of the BA generally consists of the study of four different subjects, each for the full year. In subsequent years, students specialise more, usually concentrating on two or three subjects.

To ensure that your degree is coherent and conforms to a certain standard, you must pursue at least one of your first four subjects all the way through your degree, i.e. for all three years. This subject, or subjects, becomes your major sequence.

LEVEL 1
Four of:
Ancient History
Anthropology
Archaeology
Asian Studies
Chinese
Economic History
Economics
English
European Studies
Fine Arts
French
Geography
German
Greek
History
Indonesian
Industrial Relations
Italian
Japanese
Japanese Studies
Latin
Linguistics
Mathematics
Music
Philosophy
Political Science
Psychology
Women’s Studies

LEVELS 2 AND 3
Units leading to a major sequence in one, two or three of the subjects listed.

Students may also enrol in the semester unit, Arts Practicum. This unit provides the opportunity to put intellectual skills into practice in the workplace, with full credit towards the degree. It is an excellent opportunity for students to develop generic skills in a practical and applied setting and to gain work experience in a vocational area. Arts students have access to the Arts Multimedia Centre, which offers up-to-date facilities, combining innovative teaching techniques with educational technology.

I did an Arts degree with majors in French and Italian because I was passionate about languages and travelling. Initially I had no idea where my degree would take me but I have always believed that you will do well if you do what you love to do — and I definitely loved languages and literature. Now, looking back to my time at UWA, I believe

“I was encouraged to develop my intellect and to continually question anything that was put in front of me.”

As the founder of Bookstop, a business that has discovered new channels for the sale of books both nationally and internationally, I firmly believe that this has helped me to look at business from a different angle, one where everything is possibly a good answer or solution but not necessarily the only one and certainly not a reason to stop thinking or looking. And, just as my Arts degree did, my business allows me to live all of my passions — and yes, I do get to use my languages. There’s nothing better than doing business in French …

Visit the Arts, Humanities and Social Sciences web site at www.arts.uwa.edu.au
Arts combined courses

The Faculty of Arts, Humanities and Social Sciences offers a number of combined courses. Students in combined programmes will complete the requirements for two separate degree courses from different faculties in a slightly compressed time.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Prerequisites</th>
<th>Standard length</th>
<th>Intake Period</th>
<th>2005 TER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts/Law</td>
<td>TEE English or TEE English Literature or ESL for eligible students ³</td>
<td>6 years</td>
<td>February</td>
<td>97.00</td>
</tr>
<tr>
<td>Arts (Asian Studies)/Law</td>
<td>TEE English or TEE English Literature or ESL for eligible students ³</td>
<td>6 years</td>
<td>February</td>
<td>97.00</td>
</tr>
<tr>
<td>Arts (Communication Studies)/Law</td>
<td>TEE English or TEE English Literature or ESL for eligible students ³</td>
<td>6 years</td>
<td>February</td>
<td>97.00</td>
</tr>
<tr>
<td>Arts/Commerce</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>4.5 years</td>
<td>February and July</td>
<td>90.00</td>
</tr>
<tr>
<td>Arts (Asian Studies)/Commerce</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>4.5 years</td>
<td>February and July</td>
<td>90.00</td>
</tr>
<tr>
<td>Arts (Communication Studies)/</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>4.5 years</td>
<td>February and July</td>
<td>90.00</td>
</tr>
<tr>
<td>Commerce</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>4.5 years</td>
<td>February and July</td>
<td>90.00</td>
</tr>
<tr>
<td>Arts/Economics</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>4.5 years</td>
<td>February and July</td>
<td>90.00</td>
</tr>
<tr>
<td>Arts (Asian Studies)/Economics</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>4.5 years</td>
<td>February and July</td>
<td>90.00</td>
</tr>
<tr>
<td>Arts (Communication Studies)/</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>4.5 years</td>
<td>February and July</td>
<td>90.00</td>
</tr>
<tr>
<td>Economics</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>4.5 years</td>
<td>February and July</td>
<td>90.00</td>
</tr>
<tr>
<td>Arts/Education</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>4.5 years</td>
<td>February and July</td>
<td>82.00</td>
</tr>
<tr>
<td>Arts/Science</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>4.5 years</td>
<td>February and July</td>
<td>90.00</td>
</tr>
<tr>
<td>Arts/Medicine and Surgery</td>
<td>TEE English or TEE English Literature or ESL for eligible students ¹, ³, ⁴</td>
<td>7.5 years</td>
<td>February</td>
<td>N/A</td>
</tr>
<tr>
<td>Arts/Engineering</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>5.5 – 6 years</td>
<td>February and July</td>
<td>93.00</td>
</tr>
<tr>
<td>Arts (Asian Studies)/Engineering</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>5.5 – 6 years</td>
<td>February and July</td>
<td>93.00</td>
</tr>
<tr>
<td>Arts (Communication Studies)/</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>5.5 – 6 years</td>
<td>February and July</td>
<td>93.00</td>
</tr>
<tr>
<td>Engineering</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>5.5 – 6 years</td>
<td>February and July</td>
<td>93.00</td>
</tr>
<tr>
<td>Arts/Music</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>5 years</td>
<td>February and July</td>
<td>N/A</td>
</tr>
<tr>
<td>Music/Health Science</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>5.5 years</td>
<td>February</td>
<td>N/A</td>
</tr>
<tr>
<td>Musical Arts/Law</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>6 years</td>
<td>February</td>
<td>97.00</td>
</tr>
</tbody>
</table>

1 Some majors have additional prerequisites. Contact the Admissions Centre for details.
2 Students with a pass in Discrete Mathematics only will be required to take Mathematics in first year.
3 Teaching in first year assumes knowledge of TEE Chemistry.
4 Students without a pass in TEE Physics will be required to take a Physics unit in first year.
5 Students with only two of the three subjects will be required to complete either an intensive bridging course in February before commencement of their first semester (Calculus) or an extra Level 1 unit in their degree (Chemistry, Physics).
6 Students will need an AMEB grade 7 (performance) and grade 5 (theory) or their equivalent from Associated Boards or Trinity College and an audition tape.
7 ‘Standard length’ refers to the time taken to complete the course without a student overloading. Courses may be completed in a shorter time frame by overloading, with the faculty’s approval, at the time of enrolment.
When I finished high school I had no real idea of what I wanted to study, but I knew that I wanted to eventually work in a profession where I would work with people on a daily basis.

I took a year off, travelled around Europe, came back home and decided I’d apply for an Arts/Education degree here at UWA. I have had a considerable amount of experience working with young people at metrochurch, here in Perth, and have seen the incredibly positive impact those in a position of authority can have on young lives.

I like the combined course format as it enables me to study education alongside Arts units. This will mean that I am encouraged to continually consider what will make me a better teacher, while selecting the Arts units that most interest me. After I complete my degree I hope to work with children and young people here in Australia and throughout the world.

Casey Mulder

Anthropology

Anthropology provides you with valuable skills for living and working in multicultural societies. It gives you a fresh perspective on humankind, encouraging you to question taken-for-granted beliefs.

It is the study of cultures, institutions, social behaviours, economies and systems of meaning of all human societies. Topics include religions, politics, kinship, gender, health, migration, landscapes and the media. Cultural theories and a range of studies on behaviours and beliefs are used to explore the great diversity of past and present human societies.

Anthropology graduates are sought in a range of settings, including positions in government agencies concerned with social welfare, legal matters, physical and mental health, environmental impact, housing, education, foreign aid and agricultural development. Anthropologists are also employed to advise on indigenous issues, both in Australia and overseas, by the mining industry, legal services and a variety of community organisations.

Archaeology

Archaeology is the study of past human societies through their material remains – the things people leave behind. The course is designed to provide you with a general grasp of world archaeological studies with particular emphasis on the Australasian region, but other areas of special interest are also included.

The practical elements of the discipline are taught within all units and are brought together in the practical unit in which students excavate and analyse materials from a site.

Archaeology provides students with a deeper understanding of the history of humans on earth. There are graduate opportunities for archaeologists in museums, government departments and independent consultancies. Another important aspect of archaeology, usually covered by government departments, is the management of archaeological sites. This sort of work is often seen as part of environmental resource management, as it involves conserving archaeological resources (sites) for future generations.

Asian Languages

Asian languages are available to complete beginners and to students who have studied at secondary level. Chinese is also available to native speakers. Studying languages involves a refreshing combination of classroom activities with the use of a wide range of up-to-date materials, including the excellent Arts Multimedia Centre.

Chinese (Mandarin) is the most widely used language in the world. UWA’s Chinese language programme offers streams for complete beginners and for students who have studied Chinese as a second language, or who have a Chinese dialect (non-Mandarin) background. China is one of the fastest growing economies in Asia and there is a growing demand for graduates with knowledge of Chinese and China.

Indonesian is a relatively easy language to learn, at least at the beginner’s level. People have written and spoken Indonesian since ancient times, leaving a rich legacy of literature and poetry.

In Australia, some government departments now give priority to the employment of graduates with an Asian-related academic background. Many other potential employers including business, education and the media are also expanding their recruitment of such graduates.

Japanese students enter a stream either for beginners or for students who have studied Japanese at secondary school. UWA has a traditional Japanese tatami room, which is used for conversation practice and functions. Students at UWA join the award-winning Japanese Students’ Association, which provides excellent opportunities for language practice, learning more about the popular culture of Japan, socialising and networking. There is a constant demand for graduates in Japanese, both in government and the private sector.
Arts majors

FACULTY OF ARTS, HUMANITIES AND SOCIAL SCIENCES

ancient classical languages of Latin and Roman civilisations. Subjects include the archaeology of the ancient Greek and languages, literature, history, art and Classics and Ancient History covers the History of Asia-related academic background. specifically looking for graduates with an number of areas, with some employers vital for graduates seeking positions in a public industry.

Asian Studies

Asian Studies is an innovative interdisciplinary area focusing on contemporary Asian societies and cultures. It uses aspects of many disciplines to build up an integrated picture of the diverse societies and cultures of the Asian region, taking advantage of the latest academic developments in the field. Students study topics such as mass media and popular culture, environmental issues, religion, tourism, ethnicity and gender relations.

The study of Asia presents new opportunities and exciting challenges for students. In an era of globalisation, cross-cultural communication and understanding are much needed. An awareness of how Asian countries relate to each other, as well as to the rest of the world is vital for graduates seeking positions in a number of areas, with some employers specifically looking for graduates with an Asia-related academic background.

Classics and Ancient History

Classics and Ancient History covers the languages, literature, history, art and archaeology of the ancient Greek and Roman civilisations. Subjects include the ancient classical languages of Latin and Greek; the history of the ancient civilisations of Greece and Rome; Greek and Roman drama, both tragedy and comedy; the mythology of the Greeks and Romans; surviving Greek and Roman literature; studies in Greek and Roman art, coinage, inscriptions and architecture; and the ever-changing world of classical archaeology.

Study of these subjects is important in gaining an understanding of the origins and nature of western culture, as well as imparting useful research, communication and linguistic skills. Classics graduates are much sought after, because it is recognised that they have been exposed to subjects that are noted for their intellectual rigour. A degree which includes units or a major sequence in Classics or in Ancient History is an excellent qualification for entry to many professions such as secondary and tertiary teaching, the diplomatic service, librarianship and administrative careers in public industry.

Economics

We all hear daily of unemployment, inflation, interest rates, productivity and the balance of payments. The state of the economy affects our current and future standard of living and has come to dominate the media. The study of Economics examines these issues, explains the way the economy works and provides the basis to forecast what is likely to happen to the economy in the future. Economics is the discipline that investigates how society can make efficient choices so that we can maximise our living standards.

A major in Economics offers career opportunities in banking, trading, consulting and stockbroking firms and government departments, particularly those that place a premium on knowledge of financial markets, international trade and trade policy, macroeconomic analysis and decision-making processes.

English

English encourages a diversity of critical approaches to literature and the media in all its forms: print media, television, cinema, the internet and of course, the more traditional forms of prose fiction, plays and poetry. The aim is to read critically, to analyse how issues of culture and power – concepts such as identity, sexuality and the ‘locations’ of meaning – are encoded in both traditional and new forms of literature.

English offers a wide range of courses, including creative writing, Australian literary and culture studies, post-colonial and post-modern literatures, gender studies, theatre and performance studies. English literature from the fourteenth century onwards, Shakespeare, ecology and culture, literary theory, reading film and literature and the law. The emphasis is on developing an understanding of how we communicate and of diverse forms of representations across time, culture and media.

English will introduce you to important skills such as online research competence; collaborative project work; and multimedia experience. English graduates are highly successful in obtaining a wide range of jobs, from teaching to management, from journalism to the public service, and in all aspects of the cultural life of our society. Many proceed from studies in English to specialised training in one of the professions such as law, psychology, librarianship, industrial relations or theatre and media work.

European Languages

European languages are available to complete beginners and to students who have studied at secondary level. A degree in a foreign language can lead to careers in teaching, the diplomatic services, interpreting and translating, as well as a range of careers in travel, publishing, theatre, commerce, journalism, communications, the arts, international relations, community and public employment, law and industrial relations.
FRENCH The French programme offers units aimed at developing competence in French language, both spoken and written, French culture and literature. The course is flexible and multi-streamed to cater for beginners, TEE students and those with a background in French.

Upper-level students continue language and cultural studies, with a variety of Francophone (French-speaking) topics to choose from. The ‘French in Action’ linguistic tour to France is a popular option, as are the exchange programmes to French universities.

GERMAN is the most widely spoken language in Europe. Germany is the fourth largest economy in the world and the powerhouse of the European Union.

ITALIAN opens up the riches of Italy’s cultural past and the fascination of its dynamic present. The teaching programme includes study of the Italian language, literature, history and linguistics, within the context of Western European civilisation.

European Studies

European Studies is an interdisciplinary programme focusing on contemporary Europe. It provides a comparative framework for units of European history, politics, literature, languages and culture. The ‘New Europe’ involves not only business, manufacturing, trade and commerce, but all of the areas which contribute to international links: communications and media, education and training, art, music and culture, technological, scientific and intellectual interchange, and law and international relations.

It is essential for international business people, journalists, lawyers, teachers, technicians, musicians, academics and others to have an understanding of Europe.

Fine Arts

The Fine Arts major is especially designed for those students who wish to study only art history and theory. Fine Arts also offers the opportunity to study visual culture, including film studies, architecture and landscape architecture.

The BA course focuses on the scholarly and critical analysis of art. A limited amount of practical studio tuition is possible as part of other studio-based units. The School has a special interest in the history of seventeenth, nineteenth and twentieth century art, and Australian and US art.

Fine Arts graduates address contemporary issues in a creative manner, a quality that is in high demand in most challenging careers. There is a rapidly increasing range of careers in arts-related areas as arts practices become increasingly professionalised and globalised.

Geography

Geography involves the study of all aspects of the environment, including the processes that form the so-called ‘natural’ environment, the processes that influence the arrangement in space and time of people’s activities, and the inevitable interplay between the two. Geography is thus a bridging subject between the natural, environmental and social sciences.

Geography at UWA focuses on five inter-related themes: urban and regional environmental planning; environmental processes; planning and management; spatial data technologies; and the political and economic development of the Indian Ocean/Asia-Pacific region. As part of their studies, Geography students gain experience of innovative field and laboratory techniques in environmental interpretation, mapping of social and community profiles, remote sensing and spatial data analysis.

History

Suppose you had no memory. You would have no idea who you are or where you come from. You would have no idea what to do, where to go, how to behave. A society without history is like a person with no memory. Not knowing how we got to where we are, we would have no idea where we might be going. Studying history introduces you to the way we make the collective memory of the human race.

Most History graduates find careers in which they can use their skills in research, critical analysis and written communication such as teaching, journalism, librarianship, government agencies, and business administration.

Industrial Relations

Industrial Relations is always in the news. All sorts of questions arise in the workplace. How many workers should there be? How much should they be paid? What should happen to any workers who are no longer needed? Should workers join a union? Who should pay for a worker to be trained? Who trains the managers? Shouldn’t there be more consultation? What is enterprise bargaining? Industrial Relations asks (and attempts to answer) all these questions and more, and prepares students for a career in industrial relations or human resource management.

An industrial relations specialist has a challenging role in conducting, researching, developing strategy, giving advice, negotiating agreements and resolving disputes.

Visit the Arts, Humanities and Social Sciences web site at www.arts.uwa.edu.au
Linguistics

Linguistics is the study of human language. Linguists are concerned both with what all languages have in common and with how individual languages can differ from one another. Linguists study how languages are structured, how they are learned and used, and how languages change through time. You can study Linguistics even if you only speak one language. What is most important is to have a curiosity about languages and language, because that is where Linguistics really starts.

Linguistics is of value in any future career involving language or languages, human social organisation and culture, the nature of intelligence, or the human mind. Many Linguistics graduates enter careers in language teaching, journalism and broadcasting, translation and interpreting, Aboriginal education and advisory work, or the computer software industry. With postgraduate study in Linguistics, more specialised job opportunities become available including industry jobs in the fields of speech technology, natural language understanding, and artificial intelligence, as well as positions in the medical professions related to speech and hearing disorders, and staff positions for major dictionaries.

Mathematics

Mathematics is humankind’s most powerful tool for comprehending the universe. It is also essential to almost every field of intellectual endeavour: to business, management, communication, medicine, science and engineering, to name a few. The world as we know it would not be possible without mathematics. Mathematics is exciting and creative; new mathematics is being created every day, at an increasing rate! In today’s information-rich environment, the possibilities formathematically-trained graduates are endless.

Music

A Music major in the BA is taken by students who wish to include some music studies within a multi-disciplinary liberal arts education (without an emphasis on performance), and can lead to similar career paths such as the Bachelor of Music (Musicology). UWA Music graduates have found careers as orchestral musicians, arts administrators, community music officers, music producers, radio announcers, librarians and teachers.

Philosophy

Philosophy is thinking about some of the basic issues in our lives. These include some very big questions. Does God exist? Do the sciences tell us the truth about the world? What constitutes a good or meaningful life? How can we say what we mean? Are other people’s experiences like our own? What does it mean to be conscious? What are emotions and how are they relevant to our lives?

Philosophy involves drawing upon and going beyond what the sciences tell us. The tradition of English-language philosophy emphasises the use of reason, common sense and a sensitive awareness of contemporary culture in exploring ideas.
The critical skills developed by Philosophy can help with other subjects too and will be very useful in a wide range of careers. In business and the public service, Philosophy graduates can be found in challenging areas, such as strategic planning, where their conceptual skills and the ability to ‘see the big picture’ are highly valued. With a growing awareness of corporate, medical and environmental ethics, students who specialise in ethics have the opportunity to work in these areas. Medical ethics is another area of growth. Recent UWA Philosophy graduates have found work in journalism, computing, libraries, the law and the public service.

Political Science

Political Science investigates how individuals, social movements, groups and parties seek to influence each other and governmental decision-makers; how governmental systems are organised and operate; and how policies related to such things as welfare, multiculturalism and the environment come into being and influence our lives.

At the international level, it analyses issues such as the causes and consequences of war; the creation of international agreements about such things as trade, weapons development and human rights; the operation of international organisations such as the United Nations; the emerging international agenda concerning migration, refugees; terrorism, drug trafficking and religion; and the nature and consequences of globalisation.

Graduates in Political Science are everywhere, and not just in political parties and government. Many graduates pursue careers in journalism, public service and business.

Psychology/ Psychological Studies

Psychology involves the systematic study of mental processes and behaviour in order to understand and explain how and why people and other animals think and act in the ways they do. It is a young and vigorous field of enquiry that fuses the excitement of creative intellectual endeavour with the precision and rigour of various scientific methodologies. The rate at which psychological knowledge is progressing means that students often will find themselves working side-by-side with academics to answer the critical questions that lie at the borders of our present understanding.

A single major (Psychological Studies) gives you a choice of units in aspects such as social, developmental or cognitive psychology, providing a useful preparation for any occupation working with people. If you are interested in a career as a registered psychologist you should complete a double major in psychology through the BA or BSc (Psychology), followed by an honours year or the Bachelor of Psychology. A further two years of postgraduate training and supervised experience are required for full registration. For further information about studying Psychology options see page 90.

Women’s Studies

Women’s/Gender Studies at UWA is an interdisciplinary area of study which focuses on a range of themes. These include the history and politics of gender relations; sexualities; the intersections of race, class and gender; feminist theory; masculinity and femininity in contemporary culture; the body; and work and technology. Women’s Studies is informed by varieties of feminist scholarship and invites students to consider some of the most significant and recent bodies of contemporary theory, while examining key issues about the meaning and experiences of gender in societies past, present, and future.

Many graduates of Women’s Studies have gone on to specialise in related areas such as equity policy development; however, the critical skills and insights of Women’s Studies can be applied much more broadly in diverse fields of work. Further, the emphasis upon explicit generic skills training – for example, through collaborative research projects and the use of Information Technology – provides students with some important practical skills which are highly valued by employers.
Bachelor of Arts (Asian Studies)

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students)

2005 minimum TER 82.00

Intake Period February and July

Weekly first-year time commitment 13 hours plus own study time

What’s it about?
The strengthening of Australia’s economic and cultural links with its Asian neighbours and its expanded role in regional affairs have made Asian Studies and related research an important field in Australian universities. The Bachelor of Arts (Asian Studies) offers an innovative approach. It combines core Asian Studies units with the study of an Asian language and a humanities or social sciences discipline. The core units explore the structure and development of Asia’s diverse societies and cultures, the expanding Asia-Australia relationship, and topical issues such as ethnic relations, development and social change, and human rights.

Career Opportunities
Studying Asian Studies will give you a sound appreciation of the societies and cultures of East and Southeast Asia and an awareness of how they relate to each other as well as to Australia.

Our graduates have obtained a wide range of fascinating and well-paid jobs from human rights organisations to the World Bank. Many employers, including the Department of Foreign Affairs and Trade, give priority to the employment of graduates with an Asia-related academic background.

The combination of Asian Studies with a major in a discipline (e.g. anthropology, economics, English, geography, history, industrial relations, politics) or an Asian language is becoming particularly attractive to employers in areas including:

- Commonwealth government (e.g. Foreign Affairs, Immigration and Indigenous Affairs)
- State government (e.g. Premier and Cabinet)
- Business and industry
- Education (primary, secondary and tertiary)
- Trade and tourism
- Media

Course requirements
Asian Studies units and units chosen from one of:

Chinese
Japanese
Indonesian

and units complementary to Asian Studies and other Arts units

Laura Dales

enrolled in Asian Studies after high school simply as a way to continue my Japanese language-learning. I realised quickly that there is far more to Asian Studies than language. Asian Studies offers units with a broad range of themes, examining politics, religion, history, gender and the environment, all in the context of Asian societies. As well as giving me practical knowledge and language proficiency, the units I’ve studied in Asian Studies have shaped my understanding of the world we live in and how we see it.

“ I have friends from Asian Studies now working in Tokyo, Singapore, Beijing and Sydney who put their Asian Studies knowledge to work as lawyers, translators, engineers and teachers.”

Thanks to a UWA scholarship I spent a fabulous year on exchange in Osaka in 1998, studying at a Japanese university and living with a Japanese family. After completing my honours degree I was awarded a Japanese-government scholarship. I lived in Kyoto for two years, doing research for my PhD thesis (now almost complete!).

At the end of eight years here, I am so glad I made the decision to study here. Asian Studies has opened the world up for me.
Bachelor of Arts
(Communication Studies)

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students)

2005 minimum TER 83.00 (Commonwealth supported)
80.00 (Australian fee-paying)

Intake Period February and July

Weekly first-year time commitment 16 hours plus own study time

What’s it about?
Have you ever wondered about how and why we communicate? Would you like to learn more about the role of communication in people’s lives?

The Bachelor of Arts (Communication Studies) looks at the nature of communication from a number of different perspectives. The course gives you the opportunity to apply your knowledge in project-based work, while developing your practical communication skills in the Arts Multimedia Centre. Workshops will teach you practical skills, including authoring techniques, Powerpoint presentations, and practical projects based around the lecture material. You will also complete a major project on a communications theme.

Career Opportunities
The course will equip you with flexible, generic, portable and internationally-recognised skills. Graduates in Communication Studies will have an extra insight into the role of communication in every aspect of our lives, which will make them particularly valuable in areas such as journalism, the media, advertising, public relations, multimedia, public administration, business, government and education.

Course Requirements
All Communication Studies students take:
• a major subject in Arts;
• the Communication Studies core units; and
• additional units which may be taken from within Communication Studies streams.

The subjects available as majors are:

- Anthropology
- Asian Studies
- Chinese
- Classics (Latin, Greek)
- Economics
- English
- European Studies
- Fine Arts
- French
- German
- History
- Indonesian
- Italian
- Japanese
- Linguistics
- Mathematics
- Music
- Philosophy
- Political Science
- Psychology

It is also possible to take a major sequence in other Arts subjects such as Women’s Studies, or certain units from other faculties such as marketing and management.

Communication Studies Core Units
• Generating Meaning: Communications and Mass Media
• Cultures, New Media and Communications
• Mark their Words: Case Studies in Communication
• Digital Media
• Communication Studies Project

It is my broad interest in the humanities, writing, film, photography and the media in general that enticed me to study a Bachelor of Arts (Communication Studies) at UWA.

Taking up a double major in English and Anthropology, I soon found that my communication units provided an invaluable balance of the practical and the theoretical, teaching me numerous skills in multimedia design, the production of web sites, use of Macromedia Flash and project management. As part of this learning process assignments were often conducted in groups, allowing for significant creative expression and, generally speaking, a lot of fun.

“In my third and final year I was given the opportunity to partake in a communications practicum at the Women’s Sports Foundation of WA.”

This involved spending 130 hours in total (approximately 10 hours a week) working at the Foundation. During this time I was offered several contract projects including researcher and primary writer for a new Healthway submission and assistant coordinator for the 2004 Parliamentary Student Sponsorship Scheme. Through this I have developed a keen interest in promoting, researching and coordinating sports related issues and programmes. I hope to build upon the communication, written and spoken skills I have developed through my Communication Studies degree to pursue a career within a sporting organisation in community and public relations.
Bachelor of Arts (European Studies)

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students)

2005 minimum TER 82.00 (Commonwealth supported)
80.00 (Australian fee-paying)

Intake Period February and July

Weekly first-year time commitment 16 hours plus own study time

What’s it about?
The Bachelor of Arts (European Studies) gives students the opportunity to explore contemporary European languages and cultures. Units offered cover areas such as European film and literature, European civilisation and civil society, social change, individual identity and human rights, ethnicity and nationalism, the European Union and the institutions of the new Europe. First-year units focus on the contemporary context; in later units the history and development of aspects of Europe are traced from their origins to the present day using film, literary, sociological, philosophical and historical texts.

Career Opportunities
The New Europe involves not only business, manufacturing, investment, trade and commerce, but all of the areas which contribute to international links: communications and media, education and training, art, music and culture, technological, scientific and intellectual interchange, and law and international relations. It is essential for Australian business people, journalists, lawyers, teachers, technicians, musicians, academics and others to have an understanding of Europe.

Geo-politically, Australia is part of Asia. It is widely acknowledged that Australia is in a unique position to mediate between Europe and Asia. European Studies units are designed to help students orientate themselves intellectually and for their professional careers in Australia between Europe and Asia.

Course requirements
European Studies units and two units chosen from one of the following languages:
French
German
Italian
and units in a complementary discipline.
Bachelor of Music

Length of Course 4 years (pass or honours)

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and TEE Music, [generally, AMEB grade 7 (performance) and grade 5 (theory) or their equivalent from Associated Boards or Trinity College], audition tape

2005 minimum TER A minimum TER of 80.00 (or equivalent) is required to be eligible for consideration

Intake Period February and July

Weekly first-year time commitment 20 hours plus own practice and study time, rehearsals and performances

What's it about?
The UWA Bachelor of Music degree course has produced graduates of considerable local and international reputation. It is a four-year, full-time degree in which students may major in composition, performance or musicology. This is a widely-recognised, practically-oriented professional degree and is designed for students who wish to pursue practical, creative and academic studies.

Career Opportunities
The course allows graduates the opportunity to pursue careers in a wide range of areas including the creative and performing arts, education, the entertainment industry and associated fields.

Course Requirements
The course involves a compulsory component of creative and performance studies in the first two years. All students must participate in instrumental or choral groups organised by the School of Music. Additional studies include conducting, music technology, performance practice, analysis and orchestration.

CORE UNITS
Music Studies
Music Techniques
Music Education
Performance– Music Performance
Music Pedagogy
Composition– Music Practical Studies
Music Composition
Musicology
Musicology– Music Performance or Practical Studies
Music Performance
Musicology
Elective Music units
Elective non-Music units

My favourite aspect of uni was the social life. There, I said it. I had so much fun studying music. I don't know if there's another course around where making friends is such an important aspect in furthering your career. I was given the opportunity to meet so many amazing people from all walks of life who had chosen music as a career. Everyone had something different to say, but I can honestly say that I don't think there was one person I met throughout my course that didn't have an impact on me.

Getting the chance to work with some of the world's finest musicians was like a dream come true.

There is no greater feeling than receiving praise from people you admire so much.

Currently I'm working full-time as a freelance musician. Performing, accompanying and teaching are all things that I learnt and was able to gain practical experience in through my music degree. I still don't know what I'm going to be doing in five years time, but one thing is for certain, I wouldn't be where I am today if it wasn't for my degree.
Bachelor of Musical Arts

Length of Course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and TEE Music, (generally, AMEB grade 7 (performance) and grade 5 (theory) or their equivalent from Associated Boards or Trinity College), audition tape

2005 minimum TER A minimum TER of 80.00 (or equivalent) is required to be eligible for consideration

Intake Period February and July

Weekly first-year time commitment 20 hours plus own practice and study time, rehearsals and performances

What's it about?
This degree course is intended for students who seek a solid musical training but who may also wish to have a less intensive practical focus than that provided by the BMus degree in Composition or Performance. Students who have completed the requirements for this degree may be permitted instead to proceed to the degree of BMus with Honours in Musicology by taking the appropriate fourth-year programme of study.

CORE UNITS
Music Studies
Music Techniques
Music Performance
Music Practical Studies
Music Composition
Music Performance Practice
Music Technology
Non-Music units

Bachelor of Music Education

Length of Course 4 years (pass or honours)

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and TEE Music, (generally, AMEB grade 7 (performance) and grade 5 (theory) or their equivalent from Associated Boards or Trinity College), audition tape

2005 minimum TER A minimum TER of 80.00 (or equivalent) is required to be eligible for consideration

Intake Period February only

Weekly first-year time commitment 20 hours plus own practice and study time, rehearsals and performances

Music combined courses

Bachelor of Music/Bachelor of Arts

Length of Course 5 years (standard)

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and TEE Music, (generally, AMEB grade 7 (performance) and grade 5 (theory) or their equivalent from Associated Boards or Trinity College), audition tape

2005 minimum TER 90.00

Intake Period February and July

Weekly first-year time commitment 20 hours plus own practice and study time, rehearsals and performances

This combined degree course joins the Bachelor of Music, a widely-recognised, practically-oriented professional degree, with the Bachelor of Arts. It is a five-year degree which will allow graduates to pursue careers in the creative and performing arts or entertainment fields as well as more general business and management opportunities relevant to Arts graduates.

Bachelor of Musical Arts/Bachelor of Laws

Length of Course 6 years (standard)

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and TEE Music, (generally, AMEB grade 7 (performance) and grade 5 (theory) or their equivalent from Associated Boards or Trinity College), audition tape

2005 minimum TER 97.00

Intake Period February only

Weekly first-year time commitment 20 hours plus own practice and study time, rehearsals and performances

Bachelor of Music/Health Science

Length of Course 5.5 years (standard)

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and TEE Music, (generally, AMEB grade 7 (performance) and grade 5 (theory) or their equivalent from Associated Boards or Trinity College), audition tape

2005 minimum TER 90.00

Intake Period February only

Weekly first-year time commitment 20 hours plus own practice and study time, rehearsals and performances

What's it about?
The four-year Bachelor of Music Education degree course provides students with the necessary skills and knowledge to operate as multi-skilled and versatile professionals in areas such as performance (both choral and instrumental), conducting, composing/arranging, improvising and utilising music technology. Graduates from this course are qualified to teach classroom music at both primary and secondary levels as well as in a second teaching area, which may be either instrumental music or an approved non-music subject such as English, Mathematics, Social Studies, Computer Science or Vocational Education.

Visit the Arts, Humanities and Social Sciences web site at www.arts.uwa.edu.au
Bachelor of Social Work

Length of Course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students)

2005 minimum TER 80.00

Intake Period February and July

Weekly first-year time commitment 18 hours plus own study time

What's it about?
Social workers are concerned with social problems, their causes, their solutions and their human impacts. Social workers work with individuals, families, groups, organisations and communities, as members of a profession which is committed to social justice and human rights. Social workers are concerned with the personal experience of people in difficulty, working with them towards effecting appropriate change. Supervised fieldwork is a key element of the course.

Career Opportunities
The Bachelor of Social Work is a professional qualification for people wishing to become social workers. The course and qualifications are accredited by the Australian Association of Social Workers, the main accrediting body in the field of social work.

The course includes a number of units available in the Bachelor of Arts course, and a number of units specifically relating to professional social work. Graduates, or applicants with prior tertiary study, may be given credit to a maximum of two years in the four-year structure.

LEVEL 1
Introduction to Social Policy
Introduction to Social Work
Australian Studies
Aboriginal History
Electives

LEVEL 2
BSW Practicum
Introduction to Professional Practice
Values, Theories and Practice
Indigenous People and Social Work
Electives

LEVEL 3
Interpersonal Practice
Social Policy/Community Practice
Organisational Practice/Ethics
Counselling, Law and Advocacy
Field Education One
Elective

LEVEL 4
Health and Public Welfare Practice
Policy, Community and Research
Field Education Two
Elective

I always wanted to be a social worker, but for a number of reasons I studied business first. Even then however, I chose jobs in the social service sector, knowing that one day I would return to study social work. ‘Why?’ I hear you ask. Because (like most social workers) I wanted to help people and I wanted a degree that would provide me with the skills and knowledge to do this well. The degree I gained at UWA definitely provided me with that, but also taught me to recognise and critically examine the relationships these people have with all the different factors in their environment, locally, nationally and globally.

The two practical placements required for this degree allowed me to use and develop my skills as a social worker in a protective and supportive atmosphere. They also provided me with my future area of professional interest.

'Even before I graduated I was offered employment and I worked within the field while studying.'

Recently I bagged my dream job as the CREATE Foundation’s West Australian Co-ordinator. CREATE works for and with children and young people in and out of home care and my job is an interesting mixture of working directly with young people, researching the sector and helping develop government policy. I credit my UWA BSW directly for this opportunity.
Bachelor of Commerce

Length of Course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students), and any TEE Mathematics. Students with only Discrete Mathematics will be required to study Quantitative Methods for Business and Economics 111 as part of their first-year requirements.

2005 minimum TER 83.00 (Commonwealth supported)
82.00 (Australian fee-paying)

Intake Period February and July

Weekly first-year time commitment 18 hours plus own study time

What's it about?
The Bachelor of Commerce is a three-year business degree that leads to careers in the commercial world either in the private sector, government or the not-for-profit sector, in areas that are essential for the functioning of each organisation. Graduates of the Bachelor of Commerce are recognised throughout the world as capable and qualified people who can contribute to the success of their organisations and are capable of processing information rapidly to make key decisions. They can be found in all major commercial centres in Australia, and internationally in Singapore, Kuala Lumpur, Hong Kong, London, New York and Tokyo, to name a few.

Career Opportunities
A degree in Commerce from UWA enjoys international recognition and offers a flexible path to diverse careers. Graduates with accounting majors are eligible for membership of the professional accounting bodies, and a significant proportion of graduates qualify to practise in public accounting. Graduates with other majors are currently being employed by retail, manufacturing, banking and private and public sectors in fields such as management, human resources, strategic planning, organisational development, sales and marketing, management science and computer applications.

Course Requirements
Level 1 Prescribed Units
The first year of the Bachelor of Commerce comprises eight units, three of which are core units:
Economic and Business Statistics
Financial Accounting
Microeconomics, Prices and Markets

The remaining Level 1 units can be options and/or electives from the Business School, or any of the other faculties, or may be prerequisites for units to be studied in later years.

Levels 2 and 3 Units
At least one major sequence of at least six units must be studied during the degree programme. Many students choose to complete a double major in order to increase the breadth of their knowledge and value to prospective employers. See pages 34–36 for information on majors available.

My parents had always been associated with the business world and so I suppose it was likely I was going to follow in their footsteps. After finishing school I was fortunate to spend a year in Japan on a Rotary scholarship. When I returned, I chose Commerce because it allowed me to combine my love of Japan with studies in the business field.

After graduating, I was accepted to work as a Co-ordinator for International Relations in Japan and spent two years there developing a number of skills, including the co-ordination and production of publications, as well as web design and public speaking.

My interest in the Internet continued during my four years working as Marketing Manager at Notre Dame University and early in 2004 I decided to pursue this interest further in the commercial arena at Webfirm, a web design and internet marketing company, where I work as Marketing and Communications Manager.

Looking back I remember how flexible the commerce degree was in allowing me to combine all of my interests.

"My degree helped me to develop the generic skills that stay with me today — time management, critical thinking and problem solving."

Most significantly, I met so many interesting people that are now friends for life.

Visit the UWA Business School web site at www.biz.uwa.edu.au
Bachelor of Economics

Length of Course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students), and any TEE Mathematics. Students with only Discrete Mathematics will be required to study Quantitative Methods for Business and Economics 111 as part of their first-year requirements

2005 minimum TER 80.00 (Commonwealth supported)
80.00 (Australian fee-paying)

Intake Period February and July

Weekly first-year time commitment 18 hours plus own study time

What's it about?
We hear constantly about unemployment, inflation, interest rates, productivity and the balance of payments. The state of a country’s economy affects the current and future standard of living. The study of Economics examines these issues, explains the way the economy works and provides the basis to forecast what is likely to happen to the economy in the future. Economics is the discipline that investigates how society can make efficient choices so that we can maximise our living standards.

Career Opportunities
Economics is a broadly based degree offering scope to specialise in economics or to develop a range of business-related skills. Career paths for graduates include work as a stockbroker, investment and financial analyst, project and research officer, banker, statistician, personnel officer, economic analyst or economist. Employers may include small retail outlets or large multinationals, international banks or Federal and State Treasuries. Employment as a professional economist is likely to be limited to graduates with good honours degrees. Studies in the Bachelor of Economics can be combined with majors, minors and electives in the sphere of Commerce.

Course Requirements
Level 1 Prescribed Units
The Bachelor of Economics comprises of eight Level 1 units, three of which are compulsory:
Microeconomics, Prices and Markets
Macroeconomics, Money and Finance
Economics and Business Statistics

The remaining Level 1 units can be options and/or electives from the Business School, or any of the other faculties, or may be prerequisites for units to be studied in later years.

Levels 2 and 3 Units
At least one major sequence of at least six units must be studied during the degree programme. Many students choose to complete a double major in order to increase the spread of their knowledge and value to prospective employers. See pages 36–37 for information on majors available.

G lobal economic conditions and economic forecasting have always been of interest to me, as have the operations of large international bodies such as the International Monetary Fund (IMF) and the World Bank. Hence, it was a fairly straightforward decision to undertake an economics degree once graduating from high school.

The Bachelor of Economics course at UWA has enabled me to further these interests, and having majored in Economics, Money and Banking, and International Business Economics this has provided me with a sound knowledge base and the relevant skills to pursue such a career path. Furthermore, the academic staff within the Business School are widely regarded as some of the best in Australia, and provide excellent support and guidance in all economic disciplines offered.

I have been working with the WA Treasury and Finance Department for almost a year now, and have also undertaken Economics Honours at UWA on a part-time basis. I firmly believe in the value and practicality of this course and have regularly applied economic theory and analytical techniques, pivotal to my current profession. Hopefully in the future I’ll be presented with the opportunity to fulfil my aspirations of working for such influential international organisations.

Visit the UWA Business School web site at www.biz.uwa.edu.au
Asian Business

What’s it about?

The major in Asian Business is completely different from any other offered in this area of study in Australia. For the first time students will be able to participate in this exciting and challenging area.

Asian Business majors

There are 12 majors available within the Bachelor of Commerce, catering for a wide range of interests and career aspirations:

- **Asian Business**
- **Electronic Business**
- **Finance (Corporate)**
- **Finance (Investment)**
- **Finance (Quantitative)**
- **Financial Accounting**
- **Human Resource Management**
- **Industrial Relations**
- **Information Management**
- **Management**
- **Managerial Accounting**
- **Marketing**

Majors are normally selected at the completion of eight Level 1 units. However, as some majors have Level 1 prerequisites the details of each major should be checked carefully. At least two majors will fit within the three years of study you will undertake.

Providing one major is studied from within the Bachelor of Commerce programme, the second major may be included from the Bachelor of Economics, or from another faculty.

Career Opportunities

The Asian Business major combines units on business contexts in Asia with units in key vocational areas such as marketing, information systems, international management, finance, taxation and legal systems that have all been remodelled to take full account of the diversity of the Asian region.

With the growing importance of international markets, especially in Asia with China’s entry to the WTO and the 2008 Olympic Games in Beijing, graduates with expertise in the business environment of Asia will be able to participate in this exciting and challenging area.

Visit the UWA Business School web site at www.biz.uwa.edu.au
Electronic Business

What's it about?
E-Business is a rapidly advancing way of doing business. The practice of e-commerce has run well ahead of any real understanding of where it is, where it is going, and what is possible.

Career Opportunities
Studying this major imparts many skills that are important to potential employers in the corporate world and in industry. Skills taught offer an effective contribution towards the strategic planning and management of electronic commerce applications in different environments. Gaining an appreciation and understanding of electronic financial markets, electronic auctions and intermediaries, digital payment systems and electronic commerce site management is critical in becoming competent to develop the activities of companies offering goods and services in the global market.

Finance (Corporate)

What's it about?
The Corporate Finance major develops the basic foundations of finance from the corporate financial manager's point of view, and is aimed at students wishing to acquire skills in the area of corporate financial and investment decision making. It includes an understanding of capital markets and sources of finance; dividend and capital structure, the basic principles and applications of constructing diversified investment portfolios; the risk management of firms and other institutions, and returns on equity, bonds and foreign currency. Significant emphasis is placed on corporate financial decisions such as project evaluation, managing risk, dividend payouts, capital raisings and growth by mergers and takeovers.

Career Opportunities
Graduates are likely to find employment in banks, corporations, financial institutions as financial consultants, merchant bankers, credit managers, financial analysts and fund managers, and businesses as financial consultants, advisers and managers.

Finance (Investment)

What's it about?
The Investment Finance major is suitable for students seeking skills in applications of modern finance, especially in portfolio allocation, investment, and the use of modern financial instruments such as options and futures for risk management and hedging purposes. While there will normally be some overlap with corporate finance subjects, in investment finance the emphasis is on workings of capital markets including the implications of efficient market theory and the risk/return trade-off for the construction and evaluation of investment portfolios. Strategies for hedging and managing risk and capital management are also important. A moderate level of mathematics and statistics is involved.

Career Opportunities
Graduates with a major in Investment Finance can expect to find employment in banks and large financial institutions and in stockbroking as fund managers, risk analysts, strategic investment advisers, financial consultants and credit managers. With the recent growth in superannuation funds, there is a high demand for graduates with investment analysis skills.

Finance (Quantitative)

What's it about?
A major in Quantitative Finance provides graduates with skills at the cutting edge of modern finance and financial engineering. It is an appropriate qualification for graduates who plan to work as financial analysts with banks, large financial institutions and investment funds. The major places an emphasis on modern financial instruments such as options and other derivative securities, and their basis in stochastic models of financial markets. Foundation material regarding efficient markets theory and its application to investment analysis and portfolio selection theory is also included. The Quantitative Finance major includes much of the material from the corporate/investment majors together with a minor in mathematics. It is targeted at students with a strong mathematical background. The topics examine the essential principles in finance with an emphasis on probability and statistical models, and their application in practice.

Career Opportunities
Graduates with a Quantitative Finance major are expected to establish careers as specialist risk managers, investment analysts, strategic advisers, as developers, applies and evaluators of complex financial instruments (financial engineers), as specialists in options, futures and other derivative securities, and as researchers specialising in financial markets.

Financial Accounting

What's it about?
The ability to prepare and interpret accounting information is beneficial for effective decision making in almost all fields of business. Consequently, the major in Accounting has the objective of providing training in the technical aspects of the preparation of accounting data; developing skills in using accounting information for problem solving and decision making, and developing awareness in related professional disciplines such as taxation, auditing and management services. The subjects studied in the Accounting major include the preparation, interpretation and regulation of general purpose financial reports for use by those external to business (financial reporting); the use of accounting data for internal management decision making (management accounting); and other subjects relevant to public accounting practice such as taxation, auditing and commercial law.

Career Opportunities
Professional accountants work in a variety of jobs as company directors, board members and chief executive officers, partners in business and in the profession, and in banking, company accounting, cost and management accounting, financial consulting, fund management, management consulting, merchant banking, public accounting practice, public sector, self-employed, small business, stockbroking and taxation. Skills in using and understanding accounting information are necessary in such a wide variety of business contexts that the successful completion of the Financial Accounting major offers an almost limitless variety of career paths. This major can be combined with additional units to meet the requirements of Australian professional accounting bodies.

Human Resource Management

What's it about?
This major presents both the basis of human resource management in theory and research, and the practical problems and issues arising in personnel and human resource management in Australia and the international arena. Areas of study include organisational behaviour, industrial law, human resource planning, recruitment and selection, compensation, human performance and performance appraisal, career development, collective bargaining, organisational theory, international personnel management, and strategic human resources management.

Visit the UWA Business School web site at www.biz.uwa.edu.au
Managerial Accounting

What's it about?
Accounting graduates who plan to work in the public sector, for non-profit organisations, and in small or large firms as cost accountants, management accountants, management consultants, or auditors must be broadly trained. These individuals need a sound foundation not only in cost and management accounting, performance indicator development and performance auditing, but also in related disciplines (for example, organisational behaviour, marketing, economics, information management and e-commerce). Therefore, the Managerial Accounting major is designed to equip students with as broad a range of skills as possible.

Career Opportunities
Accounting is the language of public and private enterprise. Therefore, accountants play a key role in most organisations and have career opportunities in a wide range of fields. These fields include corporate accounting, managerial accounting, financial controller roles, the public service, auditing and tax. Accountants have skills that are highly transferable, thus accounting opens opportunities for careers that span different organisations, different roles within organisations, and different countries.

Marketing

What's it about?
The Marketing major provides students with an opportunity to acquire knowledge and develop skills in the theory and practice of marketing, a discipline concerned with all aspects of the movement of goods and services from the producer to the consumer. The marketing of goods involves every aspect of society from business, politics, and medicine through to education, sport, entertainment and more. Marketing is interdisciplinary in nature and includes the study of specific topics such as: marketing management, consumer behaviour, promotion and advertising, marketing research, project and channel management and strategic marketing.

Career Opportunities
Career opportunities exist in all marketing functions, from retailing in stores, to marketing in research institutions and advertising agencies and selling in a private enterprise.

ECONOMICS MAJORS
There are seven majors available within the Bachelor of Economics, catering for a wide range of interests and career aspirations:

- Asian Business
- Economic History
- Economics
- Industrial Relations
- International Business
- Money and Banking
- Quantitative Economics

Economics majors are normally selected at the completion of Level 1 units. However, as some majors have Level 1 prerequisites the details of each major should be checked carefully. At least two majors will fit within the three years of study you will undertake. Providing one major is studied from within the Bachelor of Economics programme, the second major may be included from the Bachelor of Commerce, or from another faculty.

Visit the UWA Business School web site at www.biz.uwa.edu.au
Asian Business

What's it about?
The major in Asian Business is completely different from any other offered in this area of study in Australia. For the first time the social, cultural and political aspects of doing business in and with Asia have been integrated with the essential knowledge and skills of management and business to produce a commercially focused programme applicable throughout the region.

A recent survey by a US management recruiting company, Amrop, and the Harvard Business School has identified the recruitment of senior managers with ‘the right combination of skills’ as the major recruitment problem. The survey found that the demand for senior managers with specific vocational skills and an international perspective based on an adequate understanding of differing cultural, political and economic contexts far outstripped the supply. The new Asian Business major has been specifically designed to realise this balance.

Career Opportunities
The Asian Business major combines units on business contexts in Asia with units in key vocational areas such as marketing, information systems, international management, finance, taxation and legal systems that have all been remoulded to take full account of the diversity of the Asian region.

With the growing importance of international markets, especially in Asia with China’s entry to the WTO and the 2008 Olympic Games in Beijing, graduates with expertise in the business environment of Asia will be able to participate in this exciting and challenging area.

Economic History

What's it about?
The Economic History major gives students an understanding of structural, institutional and cyclical change in an economy over time and how economic theory can be used to assist that understanding.

The compulsory units cover the economic history of Australia. The elective units cover different regions and themes that provide students with a broad perspective, encouraging a global perspective.

Career Opportunities
A major in Economic History can lead to many career options. It is an excellent training for future diplomats, teachers, public servants in the development area and in the growing fields of heritage conservation and cultural tourism. The major is also a useful complement to other majors in the Business School.

Economics

What's it about?
The study of Economics equips students with the skills required for work in financial institutions, government, and the private sector. The microeconomic courses provide the theoretical applied framework for the analysis of issues in taxation, resource allocation, microeconomic reform, efficiency of the public sector and market structure. Theories of output, inflation, unemployment and balance-of-payments determination form the basis of the macroeconomic courses. These courses also contain empirical examples and are integrated with three quantitative courses that impart essential, modern mathematical and statistical skills increasingly used in business and government.

Career Opportunities
Employment opportunities for economics graduates are continually improving. The demand for economists is expected to significantly outstrip the supply. A graduate in Economics can find a variety of career paths such as stockbroker, investment analyst, personnel officer, economic analyst, economist, small retail business, a large multinational firm, an international bank, international mining company, computer manufacturer, consultancy or an airline.

Industrial Relations

What's it about?
How to have good industrial relations is one of the key issues in making any economy competitive. It affects everyone who is at work. If you study industrial relations you will study the way work is organised, the way employees are managed, the role of unions, how co-operation and negotiation can be developed, how conflict can emerge. Students will examine the nature of industrial relations both in Australia and in other countries pursuing institutional and sociological perspectives.

Career Opportunities
This major prepares students for career opportunities in management, unions and government agencies. Having an understanding of industrial relations will help you to be more effective in whatever job you do but will be particularly important if you get into a management position, work for a union, or get involved in industrial law.

International Business Economics

What's it about?
International Business Economics introduces students to basic concepts of financial management, international trade and trade policy, international financial markets, global macroeconomic analysis and decision-making processes within firms. This core of knowledge can be combined with units in international marketing, international management, applied financial management, business and economic forecasting and other areas to tailor the major sequence to a student's specific needs.

Career Opportunities
As the global economy expands, commerce, industry and government will offer many opportunities for graduates with knowledge of how economies interact. Graduates majoring in International Business Economics can expect careers with government departments such as Foreign Affairs, Commerce and Trade, major banks and large trading companies.

Money and Banking

What's it about?
The major in Money and Banking can be recommended to all students in Economics and Commerce, and combines well with majors in Economics and Finance. It provides an introduction to banking, the Australian financial system, international financial markets and the macroeconomic environment in which financial markets operate. Topics covered include recent developments in the theory of money, bank risk management, bank performance analysis, the international monetary system and foreign exchange markets, including derivatives.

Career Opportunities
Graduates majoring in Money and Banking can expect to pursue careers in the variety of banking, consulting and stockbroking firms that place a premium on knowledge of financial markets.

Quantitative Economics

What's it about?
Quantitative Economics is designed to provide students with the specialist mathematical and econometric skills widely used both in economic research and in the application of economic principles to real-world problems. Topics covered include the seasonal correction of data using regression techniques, forecasting, model selection and model evaluation. Particular emphasis is placed on the empirical measurement of economic relationships that form the basis of government and business decision making. Computers are used to assist in problem solving.
There is an old maxim that says ‘a teacher is born, not made’. For as long as I can remember I have wanted to be a teacher, but it was the Education course at UWA that has made me the best teacher I could ever be. Unlike many other courses at UWA, you start your Education degree with only 40 strangers, not 1000, and four years later everyone graduates with the most worthwhile degree and 40 great friends.

The coursework teaches students about educational theory and allows them to decide which methods will be appropriate for application in the classroom. Lecturers made themselves available to students and encouraged them to pursue high standards.

Practical experience is a large component of the Education course. Experience in the classroom has proved to be both invaluable and enjoyable, and stands all graduates in good stead for a placement in either a government or non-government high school.

I was fortunate to apply for and receive an Education Scholarship which paid my university fees in full. I urge prospective Education students to make enquiries about available scholarships.

I thoroughly enjoyed my time at university and I highly recommend completion of a Bachelor of Education or a Diploma in Education. I eagerly await my first appointment and look forward to making a difference in young people’s lives.

Visit the Education web site at www.education.uwa.edu.au
Bachelor of Education/Bachelor of Arts
Bachelor of Education/Bachelor of Economics
Bachelor of Education/Bachelor of Science

Length of course 4.5 years

Entry Requirements All degrees: TEE English or TEE English Literature (or ESL for eligible students)
Education/Economics: Any TEE Mathematics (students with only TEE Discrete Mathematics will be required to complete additional mathematics units in first year)
Education/Science: TEE Applicable Mathematics and either TEE Chemistry or TEE Physics

2005 minimum TER 82.00

Intake Period February and July

Weekly first-year time commitment 12 to 22 hours depending on the degree combination plus own study time

What’s it about?
The Graduate School of Education in conjunction with the faculties which offer courses in Arts, Economics and Science offers a combined degree programme which enables students to complete a Bachelor of Education with either a Bachelor of Arts, Bachelor of Economics or Bachelor of Science.

These combined courses will qualify students to teach in their major discipline in secondary schools around Australia and overseas. Course content for Arts, Economics and Science will be completed by the end of the third year, enabling students to exit the programme with a bachelor’s degree if they wish.

Students will be placed in schools in their third year to help them decide if they wish to proceed to the next year of the course and qualify as secondary teachers.

The Faculty of Education is committed to quality programmes suited to the individual and cultural needs of professional educators. The Faculty is also committed to ensuring its strong international identity and status as a centre for innovative research and teaching practices, and developing new and exciting programmes and initiatives.

Career Opportunities
The University of Western Australia has offered courses in education since 1916, and its graduates and staff have occupied leading positions as principals in schools, in educational systems as consultants and administrators, and as leading researchers and academics in universities all over the world.

Course Requirements

LEVEL 1
Education in Australia
Youth Culture
Units in Arts, Economics or Science

LEVEL 2
Educational Psychology
Teachers’ Work
units in Arts, Economics or Science

LEVEL 3
Introduction to Teaching
Language and Literacy
units in Arts, Economics or Science

LEVEL 4
Two Curriculum I units (one being the first component of the major)
One Curriculum II unit (the second component of the major)
Teaching Practicum
Social Justice and Special Education
Teaching and Learning Competencies
Social, Political and Legal Issues
Aboriginal Education
Competencies for Teachers

Visit the Education web site at www.education.uwa.edu.au
Bachelor of Computer and Mathematical Sciences

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and TEE Applicable Mathematics. Calculus is desirable

2005 minimum TER 80.00

Intake Period February and July

Weekly first-year time commitment 16 hours plus own study time

What’s it about?
The Bachelor of Computer and Mathematical Sciences degree course provides the opportunity to study computer science, information technology, mathematics and statistics in combination with elective units chosen from arts, commerce, economics, engineering, languages or science.

Career Opportunities
The increasing importance of mathematical sciences and the application of computer technology in all spheres of research, communications, industry and business make the mastery of mathematical and computer sciences an invaluable asset.

Course Requirements

LEVEL 1
Core units
Java Programming
and at least one of:
- Foundations of Information Technology
- Foundations of Computer Science
- Computing for Engineers and Scientists
Software Engineering
Two units of mathematics which may include Statistics (depending on student’s background)
Four electives

LEVEL 2
Students must take at least two computing units, and two mathematics units. Students intending to major in Computer Science, Information Technology Systems, or Information Technology Applications, must take:
- Data Structures and Algorithms 223
- and at least two of:
 - Object Oriented Programming 224
 - Operating Systems 205
 - Software Engineering Design 200
 - Introduction to Graphics 207
 - Discrete Structures 227

LEVEL 3

at least one major in:
- Computer Science
- Information Technology Applications
- Information Technology Systems
- Applied Mathematics
- Applied Statistics
- Mathematical Sciences
- Mathematical Statistics
- Pure Mathematics
- Discrete Mathematics
- Operations Research

Picking a course is a hard decision. For me, this was made somewhat easier by knowing that I’m no good at memorising lots of facts and figures, so this ruled out stuff like law and history. What I do enjoy, however, is figuring out ‘how stuff works’ and this is pretty much what mathematics is all about.

“Combining mathematics with computer science has enabled me to gain a far deeper understanding of topics such as artificial intelligence and computational biology than would have been possible had I only studied the computer science side of things.”

I completed majors in computer science and pure mathematics and went on to do honours in pure mathematics. My thesis was in an area known as ‘group theory’, which is of fundamental importance to almost all modern mathematics and theoretical physics.

As for the future, I shall hopefully soon begin a PhD on a topic related to ‘logic’ (that is, the study of reasoning), which sits at the intersection of mathematics, computer science, philosophy and linguistics.
Bachelor of Computer Science

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics (students with only TEE Discrete Mathematics will be required to do additional Mathematics and Statistics units at Level 1)

2005 minimum TER 80.00

Intake Period February and July

Weekly first-year time commitment 16 hours plus own study time

What's it about?
This degree caters for those students wishing to develop a strong background in computer science, information technology and software engineering.

It is a three-year degree programme suitable for students who want to study computing as a core scientific discipline.

In each year students must choose four computer science units and four additional elective units. Honours is an additional year of study and research with entry available by invitation.

Career Opportunities
Computer scientists are in demand all over the world. Students with a Bachelor of Computer Science from UWA will be equipped with up-to-date skills and expertise in a wide variety of computing areas. They will also have key generic skills, such as good problem-solving abilities, good communication skills, the capacity to work in a team and as an effective team member, and an appreciation of life-long learning. Ethical and professional responsibilities are highlighted in this degree programme.

Course Requirements
Majors
Students may choose to complete a single or double major in the Bachelor of Computer Science. The first major must be one of the following three from the School of Computer Science and Software Engineering:

- Computer Science major
- Information Technology Systems major
- Information Technology Applications major

A second major may be taken from any offered by the University (including those listed above) assuming all prerequisites have been met.

Practicum
Students must undertake an industry practicum of at least eight weeks’ work experience prior to the last semester of the degree.

LEVEL 1
Java Programming
Foundations of Information Technology
Foundations of Computer Science
Introduction to Software Engineering
and four electives

LEVEL 2
Data Structures and Algorithms
Object-oriented Programming
Operating Systems
Software Engineering Design
and four electives

LEVEL 3
Units leading to a major in either Computer Science, Information Technology Systems or Information Technology Applications, plus units leading to a second chosen major.

Steven Kirkby

When I decided to attend university, having worked for a dozen years after leaving high school, my first choice was UWA’s Computer Science degree. I had seen how software applications were becoming more intrinsic to business success, and wanted to become involved in the development of high-quality software.

“Having not studied for quite a few years, and having a young family to support, I was somewhat apprehensive about attempting full-time study. With help from the Student Services Learning, Language and Research Skills services, who conducted workshops on studying at university and effective technical writing, I was able to find my feet in the tertiary education environment, and to enjoy my time and experiences at UWA.”

I chose Computer Science as it offers a well-rounded degree with a wide choice of disciplines, from which I selected Information Technology Systems and Electronic Commerce. I found that the interaction with faculty and other students encouraged both a broad view and in-depth understanding of the subject matter, and encouraged me to develop a desire to continue to further my education. Now I am developing proprietary Enterprise software utilising the latest open-source technologies and tools. I enjoyed my time at UWA, and am considering undertaking postgraduate studies there.
Karen Andrews

“\textit{It never ceases to amaze me how many different things engineers get involved in. One of the best things about the Engineering course at UWA is the common first year, where you get a feel for the different types of engineering before choosing which one interests you the most.}”

I really enjoyed the practical aspects of studying; building bridges, analysing river flow systems, testing engines and designing models. Studying engineering was a great experience and the University Engineers Club also lives up to its name on the social scene!

I now work at Woodside Energy as a Petroleum Engineer, interpreting data we get from wells to determine how much oil and gas we have available, then modelling ways in which we can optimally produce it to meet energy needs. There is a lot of variety in what I do from day to day, interacting with people to solve problems, managing risk and working with the latest technologies. It’s a pretty challenging world out there and studying Engineering has opened the door to some fantastic opportunities.
Bachelor of Engineering

Length of course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and TEE Applicable Mathematics, plus at least two* of the following: TEE Calculus, TEE Physics, TEE Chemistry

2005 minimum TER 87.00

Intake Period February and July

Weekly first-year time commitment 25 hours plus own study time

*Please note: Students with only two of the three subjects will be required to complete either an intensive bridging course in February before commencement of their first semester (Calculus) or an extra Level 1 unit in their degree (Chemistry, Physics).

What’s it about?
You will study engineering, mathematics, physics and other topics depending on your area of specialisation. You may choose to specialise in applied ocean science, civil, electrical and electronic, environmental, information technology, materials, mechanical, mechatronics, mineral processing systems, mining systems, offshore engineering and naval architecture, oil and gas, petroleum, process or software engineering. You will be introduced to the engineering profession using effective teamwork for projects and communication of your ideas.

Career Opportunities
Though an engineering degree is demanding, the rewards are great and can lead to a variety of professional careers. The role of a professional engineer is most commonly to apply engineering knowledge to the specification and design of products, equipment and structures, and to their manufacture and construction or to design new processes and systems. An engineer may undertake research, seek new knowledge and methods, or may explore new ideas and work out how they can be applied in regular practice. Engineers find employment in a wide variety of industries where their skills are utilised in designing, planning, consulting, manufacturing, research, development, management or teaching.

Professional Recognition
The Bachelor of Engineering is recognised nationally and internationally and entitles graduates to membership of Engineers Australia. Graduates in Engineering who seek full professional status should become corporate members of one or more recognised engineering institutions, most of which accept the BE degree of this University as suitable for part of the qualifications for membership.

Course Requirements
First-year students enrol in a common core of subjects with the choice of two option units in the second semester.

LEVEL 1 - ALL STREAMS
Introduction to Electrical and Electronic Engineering
Introduction to Engineering Mechanics
Introduction to Professional Engineering
Mathematics
Physics

and two option units selected from:

- Computer Engineering
- Computer-Aided Materials Selection, Drafting and Manufacture
- Computing for Engineers and Scientists
- Engineering Dynamics
- Engineering Structures
- Introduction to Resource Engineering
- Sustainable Earth
- Software Engineering

Students may not enrol in both Software Engineering and Computing for Engineers and Scientists. For students intending to major in Information Technology, Software Engineering is a recommended elective.

Work Experience
Candidates for the degree of Bachelor of Engineering are required to complete at least 12 weeks practical experience in a suitable engineering environment as approved by the Faculty. Candidates are required to make their own arrangements for practical experience. Credit for practical experience undertaken during a vacation period or, in exceptional circumstances, before commencing the course, may be approved by the Faculty.

The Faculty of Engineering, Computing and Mathematics has an outstanding reputation for academic excellence. Our graduates are highly competitive in national and international employment markets. The Faculty comprises seven schools:

- Civil and Resource Engineering
- Computer Science and Software Engineering
- Electrical, Electronic and Computer Engineering
- Mathematics and Statistics
- Mechanical Engineering
- Oil and Gas Engineering
- Water Research

Engineering is the creative application of science to design solutions for problems in the world. Engineering is a broad and diverse field. From applied ocean science to environmental engineering, from oil and gas to electrical and electronic engineering, there is a branch of engineering that affects every level of our lives.

The Bachelor of Engineering degree at The University of Western Australia offers a choice of 15 programmes:

- Applied Ocean Science
- Civil Engineering
- Electrical and Electronic Engineering
- Environmental Engineering
- Information Technology Engineering
- Mathematics and Statistics
- Materials Engineering
- Mechanical Engineering
- Mechatronics Engineering
- Mineral Processing Systems Engineering
- Mining Systems Engineering
- Offshore Engineering and Naval Architecture
- Oil and Gas Engineering
- Petroleum Engineering
- Process Engineering
- Software Engineering
Until I started at UWA I had no idea what an engineer does. I chose the Science/Engineering course because I’ve always been good at maths and science and I like knowing how things work. Coming to the end of the course I am very happy with my decision to do Mechanical Engineering and Physics.

Mechanical Engineering is a broad major and I have really enjoyed the variety. You can study acoustics and noise control, thermodynamics (which covers everything from air-conditioning to engines), manufacturing, sustainable development and much more. My favourite subjects are dynamics and vibration, and control systems. I also like the hands-on components and practical nature of the degree.

A Physics degree complements Mechanical Engineering very well and gives you a technical advantage. You learn about state of the art technology, electronics, magnetism, nanotechnology and the quantum world … and you get to play with liquid nitrogen and supermagnets!

“One of the best parts of the Science/Engineering course is that there are so many students doing the same course so you make lots of friends and have a huge support network.”

The School of Indigenous Studies also helped me ease into uni life and provides many services for Indigenous students.
Applied Ocean Science

What's it about?

Applied Ocean Science is a new and exciting branch of engineering focusing on estuaries, coastal seas, continental shelves and the deep ocean. Engineers trained in Applied Ocean Science will use their knowledge of coastal and continental shelf areas to design sustainable management strategies to maintain the ecological health of these systems in the face of nutrient enrichment, climate change, selective extraction of elements of the food chain and dispersion of pollutants.

Career Opportunities

This is the first undergraduate degree programme in Australia that is based on strong fundamental knowledge in physics, chemistry, mathematics and biology leading to a degree with strong oceanic component and stressing the interactions between them. Applied Ocean scientists will use their knowledge of coastal and continental shelf areas to design sustainable management strategies for the utilisation and preservation of the ocean, its continental margins and the global atmosphere as it is linked with the ocean.

Potential employers of Applied Ocean Science graduates are:
- Engineering consultants in coastal, offshore and port engineering
- Resource industry
- Federal and State government departments dealing with the marine environment
- Federal Research Organisations
- Local Governments
- Port Authorities

Civil

What's it about?

Civil engineering is very diverse. It is a broad-based profession whose members can be found in all major industrial and commercial environments. Civil engineers are required to deal with people and to mix technological science with management skills. These skills are used in activities such as: industrial and commercial building design and construction; highways, railways, road and rail bridges; airports; ports and harbours; excavation and tunnelling; mining; offshore oil and gas; building materials; architectural design; electric power transmission; food handling and storage; waste treatment and water supply.

Career Opportunities

Civil engineering graduates from UWA are in demand both in Australia and abroad, in all major industrial and commercial environments. Civil engineering is a profession that encompasses: industrial relations; occupational health and safety; politics and community; environmental impact; financial management; legal obligations; technology management. Civil engineers are generalists; they are never tied to one industry or to one product. Their profession is insulated from many of the economic variations that control demand for narrow technical experts.
Engineering Programmes

FACULTY OF ENGINEERING,
COMPUTING AND MATHEMATICS

Electrical and Electronic

What's it about?
Electrical and electronic engineers plan, design, construct and manage essential aspects of electrical power generation, telecommunications systems, biomedical instrumentation, control systems and electronic devices, circuits and systems.

Communication engineering deals with the transfer of information of diverse kinds by the modulation, transmission and subsequent demodulation or reception of electrical, electromagnetic or optical signals.

Power Systems engineering is a very large field of professional engineering practice in Australia and throughout the world. The major field of expertise in this School is in all aspects of power generation, transmission, distribution and supply and especially computer-aided design and control of large integrated power network systems.

Control engineering deals with automatic means by which the performance of a process or plant is controlled or regulated from measurements of its own response. Feedback control of this kind, and its fundamental concepts, has very wide applications and implications in robotics and automation.

Electronic engineering deals with the development and application of electronic devices, circuits and systems. Electronic Engineering equips graduates for careers in industries engaged in the development and application of electronic devices, circuits and systems. The various streams of Electronic Engineering encompass computer technology, electronic circuits and systems, microelectronics and VLSI design and high frequency communication electronics.

Career Opportunities
Electrical and Electronic Engineering has a very wide scope and is progressively expanding. Career prospects for UWA graduates are excellent in Australia as well as overseas. Areas of employment include: computer systems, defence, biomedical instrumentation, aerospace, oil and gas industries, automotive industries, electrical power systems, home appliances and entertainment and transportation.

Environmental

What's it about?
Environmental engineers design ways to reduce, solve or prevent a wide range of environmental problems. Their work may include:

- assessing proposed developments and finding ways to minimise water and air pollution and environmental impact;
- designing developments so as to preserve biodiversity and cultural diversity;
- disposing of toxic wastes, remediating contaminated ex-industrial sites, rehabilitating mine sites, treating and disposing of sewage;
- controlling and reversing degradation of land due to erosion and salinity;
- rehabilitating mine sites;
- finding ways to improve and/or prevent the degradation of wetlands, estuaries and the coastal zone;
- managing surface and groundwater resources used for water supplies;
- developing environmental policies.

Career Opportunities
A degree in Environmental Engineering will equip you with the practical skills required by a wide range of employers, including: government departments, environmental consultants, multinational companies, mining companies, local government authorities and research organisations.

Information Technology

What's it about?
Information Technology Engineering involves planning, designing, constructing and managing computer systems development, automation, software development, computer applications, communications and global information networks.

There are two main areas the course covers:
- Computer Systems Engineering
- Communication and Network Systems Engineering

Each of these areas is progressively developed through the course and in the final year, they consolidate with units in digital communications, layered information networks, computer real-time, distributed and fault tolerant computer systems plus electives in advanced software engineering, electronics and more.

Career Opportunities
Information Technology offers great variety in career opportunities in Australia and widely overseas. It is one of the biggest growth areas of employment. Potential employers of Information Technology graduates include: telecommunications carriers and manufacturers; computer and information system companies; government departments of information technology; supply utilities, water supply utilities, and transport authorities; information technology branches of organisations in the mining, mineral processing and aviation industries.

Materials

What's it about?
Materials engineers put the fundamental studies of physics and chemistry into real-life engineering applications. They investigate relationships between material structure and properties and find ways in which materials with specific industrial properties can be designed, manufactured and processed. Materials Engineering is also concerned with inventing new materials needed for new technologies such as superconductors and intelligent materials.

Career Opportunities
The minerals industry is a major employer of materials engineers. In addition, materials engineers find employment in a wide range of industries including aerospace, automotive, chemical, electronic, manufacturing and resources industries.

Mechanical

What's it about?
Mechanical Engineering is an exciting profession for people who want to be involved in the processes of building, developing and caring for our world. Mechanical engineers design, develop, manufacture, install and manage all kinds of equipment and processes, such as electrical power generators; process equipment for petroleum, mining and manufacturing industries; robots and computer-aided systems.

Career Opportunities
Mechanical engineers are in demand all over the world. Over the years, our mechanical engineering graduates from UWA have

Visit the Engineering, Computing and Mathematics web site at www.ecm.uwa.edu.au
earned an excellent reputation working in aerospace, aeronautics, marine and automotive design and testing, resource development and energy supply, building services, manufacturing and transport and the design and manufacture of medical equipment.

Mechatronics

What’s it about?

Mechatronics engineering applies expertise in computing and electronics plus core mechanical engineering knowledge to design and build the electronic and computer control systems that nearly all machinery relies upon for efficient and reliable operation.

The ability of automatic systems to monitor process plants for leads and faults and keep the plant operating all year round is one application of mechatronics. Other applications of mechatronics include the design and manufacture of consumer goods which require embedded computers to control their automatic features.

The UWA Mechatronics Engineering programme was generated in response to industry demand for mechanical engineers with computing and electronics expertise. At UWA you will specialise in authentic industry applications of industrial plant control and robotics in an exciting environment that encourages students to develop the skills necessary to be in the forefront of engineering anywhere in the world.

Career Opportunities

As a Mechatronics graduate from UWA you will have a broad technical background which prepares you for your future and offers a broad range of employment and further study opportunities.

Mineral Processing Systems

What’s it about?

The mining industry is the backbone of our modern way of life. We all rely on its products such as metals, coal and mineral sands. The industry is Australia’s largest single exporter. In global terms, Australia is ranked in the top three countries for the supply of commodities such as gold, lead, diamonds, nickel, mineral sands, alumina and zinc.

Virtually all of the minerals required to run our modern society are processed initially by mineral processing engineers. After ore is recovered from the ground, mineral processing engineers are responsible for the extraction of valuable materials, which requires a broad range of knowledge and skills.

Career Opportunities

UWA graduates entering the mining industry can follow a career in many fields and in many countries. These include (but are not limited to) working:

- as technical specialists (e.g. grinding, flotation, bio-leaching)
- with service companies (e.g. supplying technical solutions for process control, specialist software, materials handling)
- as consultants, in Australia or overseas
- in mine management and production
- in banking, finance or stockbroking
- in research and development
- in the government sector

Course Requirements

This course includes chemistry, fluid dynamics, and thermodynamics, as well as specific mineral processing topics such as pyrometallurgy, hydrometallurgy and process control systems. It produces skilled engineers, with an emphasis on the analysis, design and optimisation of complete mining operations (or systems) – from extraction of the ore right through to delivery of the final product to the customer.

Mining Systems

What’s it about?

Mining engineers are responsible for the extraction of minerals from the ground using surface and/or underground mining techniques. Mines can be shallow or deep, large or small and the mineral mined can be anything required by our society, e.g. gold, platinum, copper, zinc, mineral sands, iron ore, coal. Mining engineers are involved in many activities including mineral deposit evaluation, mine planning and design, surface and/or underground excavations, mine waste disposal, and the minimisation of environmental impact. A Mining engineer needs a wide breadth of knowledge to overcome technical challenges in the best way, while working within community and environmental values. Mining is an outdoor activity and there are many career opportunities in it for those who enjoy an active outdoor life.

Career Opportunities

UWA graduates entering the mining industry can follow a career in many fields and in many countries. These include (but are not limited to) working:

- as technical specialists (e.g. rock mechanics, mine simulation, ventilation)
- with service companies (e.g. supplying technical solutions for explosives, specialist software, trucks)
- as consultants, in Australia or overseas
- in mine management and production
- in banking, finance or stockbroking
- in research and development
- in the government sector

Course Requirements

This course includes geology, engineering design and project management, as well as specific mining topics such as surface mining, underground mining, rock mechanics and mine design. It produces skilled engineers, with an emphasis on the analysis, design and optimisation of complete mining operations (or systems) – from extraction of the ore right through to delivery of the final product to the customer.
Offshore Engineering and Naval Architecture

What’s it about?
Offshore Engineering and Naval Architecture comprises two areas:
• design of infrastructure for offshore oil and gas production including offshore platforms, subsea production equipment and pipelines
• design of ocean going ships, naval vessels and small crafts

Offshore engineers and naval architects may specialise in the following areas: design of offshore platforms, design of ships and naval vessels, offshore installation of structures, subsea technology, structural design and analysis of offshore structures and ships, dynamics and hydrodynamics of offshore structures and ships.

Career Opportunities
Offshore Engineering and Naval Architecture graduates work as design engineers or naval architects with oil companies, offshore contracting and consulting firms, shipbuilders and ship repair companies, government bodies, port and harbour authorities, Defence departments and contractors, ship classification societies or in academia.

There are many companies around the world that will hire you, including Nexen Petroleum, Schlumberger, Chevron Texaco, Advanced Geomechanics, BHP Billiton, BP, Conoco Phillips, Shell, Woodside Energy, Petronas, Department of Defence, DSTO, Australian Submarine Corporation, Tenix Systems, Intec Engineering, Technip Offshore and Austal Ships.

Oil and Gas

What’s it about?
The Oil and Gas Engineering degree provides students with the option for a comprehensive introduction to the oil and gas industry without the specialisation required for degree offerings in Petroleum, Process or Offshore Engineering. The BE(Oil&Gas) encompasses aspects of all the above degrees to give students an inclusive overview of how the industry operates and is ideally suited for students interested in undertaking an Engineering degree with more flexibility in its core programme than the more specialised degrees.

The Oil and Gas Engineering degree is aimed at satisfying industry’s demand for graduates with specialist education in the oil and gas area. The degree is built on a core of existing UWA engineering units that span the traditional streams of Civil, Mechanical and Chemical Engineering, with additional units added that give a broad background to Australia’s oil and gas resources and cover the specialist option in greater depth. There are two streams in the oil and gas programme:
• Production and Process Engineering
• Offshore Engineering

Career Opportunities
The oil and gas industry is the most valuable resource sector in Western Australia and a major employer of engineering graduates throughout Australia and Southeast Asia. Oil and Gas Engineering students are strongly sought after by industry, both in Perth and abroad.

Because of their broad background, Oil and Gas graduates have found employment in all aspects of the oil and gas industry from major operating companies, service contractors, offshore and facilities design specialists, consulting engineering groups and financial institutions.

There are many companies around the world that will hire you, including Worley, Weatherford, Thiess, Technip Offshore, Schlumberger, RISC, Nexen Petroleum, Aker Kvaerner, MIM, IGL, Clough Engineering, ChevronTexaco, BHP Billiton, Advanced Geomechanics, BP, Conoco Phillips, Shell, Woodside Energy and Petronas.

Places in the world you can work include the USA, Canada, Brazil, Britain, Norway, Thailand, Malaysia, Indonesia, Timor Sea, China, West Africa, Angola, Nigeria, Ivory Coast, Libya, Algeria, Tunisia, the Middle East, Caspian Sea, Russia, Kazakhstan, Venezuela and the Philippines.

Petroleum Engineering

What’s it about?
Petroleum Engineering involves locating petroleum and natural gas deposits (called reservoirs) and estimating their value.

Determining the quantity and quality of oil and natural gas in a reservoir is essential, as setting up petroleum and gas production is extremely expensive, potential recovery must justify the cost. Petroleum Engineering is concerned with the safe drilling of oil wells and managing the extraction of oil and gas from reservoirs. Petroleum Engineers may specialise in different disciplines such as drilling exploratory wells, the design and building of oil wells and estimating the size, volume and quality of petroleum reservoirs. Petroleum Engineers manage the safe and cost efficient day to day running of petroleum and gas reservoirs.
Career Opportunities
There are many companies around the world that will hire you, including Worley, Weatherford, Thiess, Technip Offshore, Schlumberger, RISC, Nexen Petroleum, Aker Kvaerner, MIM, IGL, Clough Engineering, Chevron Texaco, BHP Billiton, Advanced Geomechanics, BP, Conoco Phillips, Shell, Woodside Energy and Petronas.

Places in the world you can work include the USA, Canada, Brazil, Britain, Norway, Thailand, Malaysia, Indonesia, Timor Sea, China, West Africa, Angola, Nigeria, Ivory Coast, Libya, Algeria, Tunisia, the Middle East, Caspian Sea, Russia, Kazakhstan, Venezuela and the Philippines.

Process Engineering
What’s it about?
Process Engineering is concerned with the different stages of turning crude oil and natural gas into safer and more usable forms. From extraction through to delivery to the end user, petroleum and natural gas undergo many processes. For example, crude oil needs stabilising before being transported to oil refineries, while gas is broken down into different products such as Liquefied Natural Gas (LNG) and Liquefied Petroleum Gas (LPG) before transportation.

Process Engineering covers the design, commissioning and operation of these processes and plants for the treatment of crude oil and gas.

Process Engineers design and control the following parts of the supply chain: separation of the well fluids; treatment of oil and gas prior to transmission; treatment of water prior to disposal; separation of the gas stream into products such as Domestic Gas, propane, butane and LPG; and liquefaction of gas into LNG for transportation to customers by ship. Others may specialise in the design or operational function of offshore or onshore facilities. Process Engineers often work in large multi-disciplinary teams to perform the following tasks:

- ensure safe, efficient and environmentally-friendly processing
- maintain product quality
- design of process and equipment required to treat and stabilise reservoir fluids (both oil and gas)
- develop more cost-effective processes
- develop smaller and lightweight equipment with improved reliability and reduced maintenance

Career Opportunities
There are many companies around the world that will hire you, including Worley, Weatherford, Thiess, Technip-Coflexip, Schlumberger, RISC, Nexen Petroleum, Aker Kvaerner, MIM, IGL, Clough Engineering, Chevron Texaco, BHP Billiton, Advanced Geomechanics, BP, Conoco Phillips, Shell, Woodside Energy and Petronas.

Places in the world where you can work include the USA, Canada, Brazil, Britain, Norway, Thailand, Malaysia, Indonesia, Timor Sea, China, West Africa, Angola, Nigeria, Ivory Coast, Libya, Algeria, Tunisia, the Middle East, Caspian Sea, Russia, Kazakhstan, Venezuela and the Philippines.

Software Engineering
What’s it about?
This major stream within the Bachelor of Engineering degree is designed to offer students fundamental knowledge and skills in software engineering, and its design is based on the following eight major knowledge groupings (encouraging strong design skills and ‘best practice’ programming in a range of languages):

- software engineering core knowledge (particularly the planning and control of a process to meet clients’ needs, emphasising pragmatic issues such as requirements engineering, quality, reliability, usability, and safety critical issues, all with process improvement)
- programming fundamentals and the theory of computer science, particularly algorithms, data structures, graphics and formal methods
- computing systems, particularly digital systems, operating systems, networks and communications, graphical and other I/O devices, and embedded and distributed systems
- systems theory
- general engineering knowledge, including professional issues, ethics, management and consulting skills
- mathematics and physics
- the psychology of programming teams, system usage, human-computer interaction, organisational culture, and communicating with clients
- domain knowledge, touching on various application areas such as commercial systems, artificial intelligence, e-commerce, scientific computing and games

Visit the Engineering, Computing and Mathematics website at www.ecm.uwa.edu.au
Bachelor of Laws and combined courses with
Bachelor of Arts
Bachelor of Arts (Asian Studies)
Bachelor of Arts (Communication Studies)
Bachelor of Commerce
Bachelor of Economics
Bachelor of Health Science
Bachelor of Musical Arts
Bachelor of Science

CATEGORY A — School leaver entry – combined courses

Category A
Category A Law is a combined degree programme, the first three years generally comprising a combination of Law and non-Law studies and the final two years comprising Law studies only. All school-leavers must apply for Category A Law.

Length of course 6 years (standard) 1

Intake Period February only

2005 minimum TER 97.00

Entry Requirements
Law/Arts, Law/Asian Studies, Law/Communication Studies — TEE English or TEE English Literature or ESL for eligible students
Law/Commerce, Law/Economics, Law/Science, Law/Health Science—TEE English or TEE English Literature or ESL for eligible students and any TEE Mathematics (Note: students with a pass in TEE Discrete Mathematics only will be required to take Mathematics in first year). Some Science majors may have additional prerequisites.
Law/Musical Arts—TEE English or TEE English Literature or ESL for eligible students, TEE Music [or AMEB Grade 7 (performance) and Grade 5 (theory) or equivalent from Associated Boards or Trinity College] and an audition tape

Weekly first-year time commitment 18 hours plus own study time

1 ‘Standard’ refers to the time taken to complete the course without a student overloading. Courses may be completed in a shorter time frame by overloading, with the faculty’s approval, at the time of enrolment.

Course requirements
Students wishing to overload and complete in five years should follow the pathway below. Students who do not wish to overload may proceed through the combined course at their own pace, having regard to the degree rules, time limits and prerequisites that apply.

Students who successfully complete the first year of a five-year combined degree course may apply to re-enrol solely in a course for the degree of Bachelor of Laws, or solely for a bachelor’s degree in another faculty.

LEVEL 1
Legal Process
Contract 1 and 2
plus non-Law units

LEVEL 2
Torts 1 and 2
Criminal Law 1 and 2
plus non-Law units

LEVEL 3
Property 1 and 2
Constitutional Law 1
Equity
Trusts
plus non-Law units

“"There is one way in this country in which all men are created equal — there is one human institution that makes a pauper the equal to a Rockefeller, the stupid man equal to an Einstein and the ignorant man equal of any college president. That institution, gentlemen, is a court.” — To Kill a Mockingbird

Jay Sanghani

It was when reading these very words that a passion for justice and equality was ignited in me, and the choice to study law followed. With the UWA Law School rated as arguably one of the best schools in the country, its strong reputation of academic excellence and distinguished alumni of graduates, the choice of where to go was even easier.

The Law School provides a strong theoretical grounding of the law and its social context, with the added benefit of teachers with extensive experience in private practice and industry. With the opportunity to participate in various competitions, mooting, trial advocacy and negotiation and mediation to name a few, UWA also encourages the practical application of legal skills.

“These skills are not just limited to the legal profession, but invaluable amongst all industries, meaning a Law degree will ultimately lead to a rewarding career whether you become a lawyer or not.”

It’s not all about work, however; the law student typically having a busy social calendar, endorsed by the Blackstone Society. All in all, a life-changing experience, worth every cent.

Visit the Law web site at www.law.uwa.edu.au
Why a Combined Course?

Students entering the Law School through matriculation entry are required to study law in conjunction with another discipline in a five-year combined degree programme.

The Law School has quite deliberately placed a high priority on combined degree courses and innovative teaching in smaller group format, particularly in the first and second years of the undergraduate curriculum.

In all first-year subjects, instruction is undertaken in classes which are not permitted to exceed 40 in size. This highly unusual and staff intensive programme structure has made it possible for the School to offer very high levels of pastoral care and individualised attention to academic performance.

CATEGORY B — Graduate Law

Category B

Category B Law is for graduate applicants. Students who have at least a bachelor's degree from UWA, or from any other tertiary institution, which can be credited with equivalent status, are eligible to apply. The bachelor's degree may be in any subject. If you expect to complete such a degree in 2005, including if you are currently enrolled at UWA, you would apply for this category.

Length of course 3 years

Intake Period February only

Entry Requirements Bachelor's degree in another discipline

Weekly first-year time commitment 14 hours minimum plus own study time

Course Requirements

LEVEL 1

Legal Process
Criminal Law 1 and 2
Contract 1 and 2
Torts 1 and 2
Property 1 and 2

LEVEL 2

Constitutional Law 1 and 2
Equity
Trusts
Administrative Law 1 and 2

LEVEL 3

Corporations Law
Evidence
Procedural Law
Commercial Practice, Conveyancing and Drafting
Law option units

LEVEL 4

Procedure
Commercial Practice, Conveyancing and Drafting
Law option units

CATEGORY C — Non-Graduate Law

Category C

Category C Law is for applicants who have undertaken some studies at either UWA or any other Australian university but have an incomplete degree. Those with incomplete overseas tertiary study and those with overseas school-leaving qualifications other than NZ Bursary/NCEA or the International Baccalaureate Diploma may also apply for Category C Law.

Length of course 4 years

Intake Period February only

Entry Requirements Completed at least one full-time year of tertiary study

Weekly first-year time commitment 11 hours minimum plus own study time

Course Requirements

LEVEL 1

Legal Process
Criminal Law 1 and 2
Contract 1 and 2
Torts 1 and 2

LEVEL 2

Property 1 and 2
Constitutional Law 1 and 2
Equity
Trusts
Administrative Law 1 and 2

LEVEL 3

Corporations Law
Evidence
Law option units

LEVEL 4

Procedure
Commercial Practice, Conveyancing and Drafting
Law option units

Career Opportunities for Law Graduates

Most Law graduates practise as professional lawyers, joining legal firms or government legal agencies, operating as legal advisers in the public and private sectors, or practising at the independent bar. To become a legal practitioner in Australia after completing the LLB, the graduate serves one year as an articled clerk, and a further ‘restricted practice year’.

The study of law should not be considered merely as a path to professional legal practice and, as with all professions, employment opportunities reflect market demand. There are many other career opportunities for law graduates, especially those who have completed a combined course.

Some well-known graduates of the UWA Law School have pursued careers outside law with great success, for example, in politics, business, diplomacy, finance and banking, public service, publishing, advertising and academia. Students are strongly advised to consider all career options.

Visit the Law web site at www.law.uwa.edu.au
I’ve always enjoyed science, and working with people makes me happy, so dentistry was a good career choice for me as it helped me integrate both my interests.

Right from the beginning, in addition to learning about the basics of medicine and dentistry, a lot of training is provided in practical work. You start seeing patients at the beginning of the third year. You carry out simple procedures initially, but as more is learnt about the various specialties, you are given an opportunity to carry out more complex treatment. The majority of the academic component is completed within the first four years. Fifth year is mainly based on clinical placements with the prospect of exploring dentistry in rural Australia, interstate or overseas.

As a Dentistry student you also automatically become part of the UDSS, which organises various sporting and social events throughout the year. So you get to enjoy uni life too!

The BDSc degree provides students with the flexibility to work in a rural area, with the government, or in private practice after they graduate.

On the whole, although challenging, I have really enjoyed the course so far as it has helped me develop social, intellectual and technical skills as well as organisational skills.
Bachelor of Dental Science

Length of Course 5 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students). No other formal prerequisites, but Chemistry is strongly recommended as it will be taught on the assumption that all students have an understanding of the subject to at least the equivalent of the final year of their secondary education; Mathematics is also recommended. Students who have not completed sufficient Physics will be requested to take Physics 131 in place of an elective subject in first year.

Intake Period February only

2005 minimum TER N/A

Weekly first-year time commitment 25 hours plus own study time

What's it about?
The course is five years of full-time study. In the earlier years of the course the emphasis is on basic sciences. As students progress through the course this emphasis decreases while that on clinical dental subjects increases until the final, fully clinical fifth year. Basic concepts visited in the early years will be revisited and placed in their clinical context in the latter years.

A number of global themes pervade the philosophy of the course. These themes are:
- the development and application of critical thinking skills;
- the ability to communicate effectively;
- the development of an ethical framework and an understanding of the obligations and responsibilities placed on a health care professional;
- the importance of infection control on the practice of modern dentistry; and
- an emphasis on prevention rather than intervention in the process of oral health care and delivery.

It is expected that graduates of this curriculum will be aware of their role in the health care team and the wider community and be able to adapt to the uncertainties of a changing world by means of a desire for career-long learning.

Dentistry is a discipline which has undergone substantial changes with the success of public health programmes in reducing dental decay. While there is no doubt that those with inherently good manual dexterity skills will find dentistry enjoyable, it is also true that most people can develop the required skill levels through practice. In addition to these purely technical skills, dentists must have good interpersonal skills and a sound understanding of the basic sciences which provide the foundation for clinical dentistry.

Greater awareness of the high levels of service that can be offered by modern dentistry as well as an increasing emphasis on the importance of personal appearance, speech and general health, have raised the profile of the role of the dentist. Students who possess intellectual and interpersonal skills, an aptitude for technical and scientific study, and manual dexterity will find that new techniques and technology make Dentistry today an interesting and challenging course.

Career Opportunities
Over the last four years, the employment rate for UWA Dentistry graduates has exceeded the national average with 96.4 per cent in full-time work and another 2.4 per cent choosing to work part-time. Most practising dentists in Western Australia are self-employed. However, other avenues of employment are available through teaching, research or the State’s Dental Service which provides dental care to children, indigenous communities, and geographically or financially disadvantaged communities.

The Dental Science degree is the only such degree in Western Australia allowing registration with the Dental Board of Western Australia and UWA graduates can enter the profession immediately. The degree is also recognised across Australia and by the General Dental Council of Great Britain.

Course Requirements
In the first year of the five-year course, students study basic medical sciences, medical chemistry, physiology, biology and biophysics, as well as operative and clinical dentistry. In the second year, subjects such as microbiology, immunology, prosthodontics, craniofacial development and patient psychology are introduced. Students focus on their own oral health care before they are responsible for patient oral health care. During their training students are required to treat a wide range of patients. Students also undertake some preliminary clinical treatment of their student colleagues and work on models to develop their clinical skills. During the course there is a gradual increase in focus on dental subjects and practical skills, until, in the final year of the course, students spend most of their time working in clinical, supervised positions at the Oral Health Centre of WA, in out-placements, including rural settings, or taking elective options.

The Faculty of Medicine and Dentistry/Student Support
The Faculty Office has an Associate Dean position specifically created for the provision of pastoral care for students and has appointed separate sub-deans for each year of the course to act as mentors and advisers. Students are encouraged to approach the Faculty with any problems that they may have. In addition the University has student guidance available, for decisions about careers, information about study skills and the provision of health services to students.

Examinations and Assessment
The structure of examinations and assessments is constantly being modified to ensure that it reflects the aims and objectives of the course. In general, examinations are held for each unit at the end of each semester and/or year. In the early years of the course these examinations are generally written. In most units continuous assessment is used. In the latter years of the course, particularly in the clinical units, there is an increasing emphasis on oral examination and examination based on the assessment of patients.

Visit the Medicine and Dentistry web site at www.meddent.uwa.edu.au
Like most high school students I was unsure of which course to choose. Health and sport interested me, but I was uncertain of my path. Then I discovered Health Science. The broad nature and flexibility of the Health Science course immediately appealed to me. It offered opportunities to explore all avenues of the health industry and included the choice of science major; that meant I could specialise in human movement and satisfy my interest in sport and physical activity.

"My time as a Health Science student was a great experience, with its blend of academic and social environments. The course encouraged a close connection between staff and students that greatly assisted the learning process, while the Health Science Society packed my social life full of outrageous events."

Since graduation it has been non-stop. My first job involved working with top Western Australian researchers on a study investigating the relationship between Perth’s air quality and children’s respiratory health. The study produced a number of important findings for the Department of Environment and has recently been published. I am now currently working as a Health Promotion Officer for the City of Cockburn. The job is fantastic! I am responsible for developing a strategic physical activity and health plan that will guide the future direction for the development and promotion of physical activity in the Cockburn district. I am also coordinating a programme that enables underprivileged youth to participate in previously inaccessible physical activity with financial and mentoring support.

I am privileged to have come this far in my career already as a Health Science graduate. I look forward to a future filled with numerous opportunities in the health industry in Australia and overseas.
Bachelor of Health Science

Length of Course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics. Some Science majors may have additional prerequisites.

2005 minimum TER 84.00

Intake Period February only

Weekly first-year time commitment 25 hours plus own study time

What’s it about!
Health Science is a four-year degree that combines biomedical and social science with population health and aspects of business. It is offered through the Faculty of Medicine and Dentistry.

Public health is about determining the influences on health, such as the social, economic, environmental, historical, political, physical and biological, how these influences interact and how the health of communities can be improved by managing these influences. Public health focuses on the health of the community, rather than individual health. It looks at what the community does to promote health and prevent ill-health.

Throughout the degree, scientific knowledge is reinforced with practical skills to ensure graduates confidently enter the workforce. This is achieved through training in professional practice preceding a semester-long work placement. Work placements help maintain a high degree of connection with the health industry, as well as converting theory learnt at university into practice in a work environment.

Career Opportunities
Students graduate with a depth of knowledge and skills in science and population health coupled with business skills, a strong foundation of basic sciences, skills for scientific investigation and critical thinking, knowledge of health in the community and personal and professional development.

Recent graduates have jobs at the Cancer Council of Western Australia; the Institute of Child Health Research; as health research associates; as project officers in the health industry; working on a residential environment project; assessing the impact of environmental change in mosquito-borne diseases; promoting health and fitness; and marketing health products.

Other career prospects, for which a Bachelor of Health Science would provide an ideal foundation, include working in health promotion and education, community health and local or state government health services, health informatics, statistics and planning, epidemiology, health services, clinical trials research, health policy and economics, public health administration, disability organisations, pharmaceutical industry and other human services using biotechnology such as genetic counselling.

Course Requirements
While the course has some core requirements, it still offers flexibility in your areas of study. All students must complete two majors — one in Public Health and one in a science major.

The science major is chosen from one of the following 15 different disciplines:

- Anatomy and Human Biology
- Anthropology
- Biochemistry
- Biophysics
- Cell Physiology
- Environmental Microbiology
- Genetics
- Geography
- Information Technology
- Mathematics
- Statistics
- Philosophy
- Physics
- Psychological Studies
- and elective units from:
 - Arts, Commerce, Economics or Science.

LEVEL 1
Human Biology or Biology or Molecular Biology of the Cell at least two of:
- Anthropology
- Chemistry
- Computer Science
- Earth System Science
- Human Movement
- Information Technology
- Mathematics
- Statistics
- Philosophy
- Physics
- Psychological Studies
- and elective units from:
 - Arts, Commerce, Economics or Science.

LEVELS 2, 3 AND 4
Public Health major including:
- Public Health
- Health Research Methods
- Health Administration
- Health Promotion
- Health Economics and Disease Control
- Health Science Professional Practice
- Health Industry Practicum

Commence a science major in one of the following:
- Anatomy and Human Biology
- Anthropology
- Biochemistry
- Biophysics
- Cell Physiology
- Environmental Microbiology
- Genetics
- Geography
- Human Movement
- Information Technology
- Microbiology
- Pathology
- Pharmacology
- Physiology
- Psychological Studies
- and elective units from:
 - Arts, Commerce, Economics or Science.

Health Science combined courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>Prerequisites</th>
<th>Standard length</th>
<th>Intake Period</th>
<th>2005 TER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health Science/Commerce or Economics</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>5 years</td>
<td>February and July</td>
<td>90.00</td>
</tr>
<tr>
<td></td>
<td>any TEE Mathematics 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Science/Law</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>6.5 years</td>
<td>February and July</td>
<td>97.00</td>
</tr>
<tr>
<td></td>
<td>any TEE Mathematics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Science/Music</td>
<td>TEE English or TEE English Literature or ESL for eligible students,</td>
<td>5.5 years</td>
<td>February and July</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>any TEE Mathematics and TEE Music 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Students with a pass in Discrete Mathematics only will be required to take Mathematics in first year
2 Students will need an AMEB grade 7 (performance) and grade 5 (theory) or their equivalent from Associated Boards or Trinity College and an audition tape
3 'Standard length' refers to the time taken to complete the course without a student overloading. Courses may be completed in a shorter time frame by overloading, with the faculty's approval, at the time of enrolment

Visit the Health Science web site at www.healthscience.uwa.edu.au
Andrej Nikoloski

I chose to study medicine because I wanted to become a doctor. There is certainly a lot to learn but it is always enjoyable as you learn in many different ways, and you get an opportunity to apply your knowledge as you go.

The aim of the course is to create ‘well-rounded’ doctors, ready to practise good medicine and tackle problems with confidence and competence. Along the way you meet people who will become your colleagues, role models and lifelong friends. The medical course is a very close community, involving not just other students but your teachers and tutors alike.

Medicine as a profession covers a vast range of careers, and there are many options open to you after you graduate. During your course you will often get a feel for what you like, and then in your first year out you get to work in these areas.

“I am currently an intern at the Royal Perth Hospital, and I have found that the medicine course has made my transition from student to doctor a very smooth one. I don’t just have a job, I have a vocation and I love it.”

Bachelor of Podiatry

Length of Course 4 years

Intake Period February only

Weekly first-year time commitment 25 to 30 hours plus own study time

Please note: this course is subject to approval by the Academic Council

What is it about?
The key role of a podiatrist is to improve the mobility and enhance the independence of individuals by the prevention and management of pathological foot and ankle problems. Podiatrists help to reduce the incidence of painful and disabling foot conditions, particularly in the elderly.

An ideal Podiatrist would be someone who:
• likes to help people and is a good communicator
• has an interest in the elderly, and diseases such as diabetes
• has an interest in biomechanics and locomotive function
• likes feet and ankles!

Career Information
Graduates from the Bachelor of Podiatry would be able to register as a qualified Podiatrist. Approximately 75 per cent of current WA podiatrists are employed in individual or group private practice. Employment occurs in a variety of settings such as aged care facilities, education and research organisations, sports medicine facilities and teaching hospitals.
Bachelor of Medicine and Bachelor of Surgery

Length of Course 6 years

Entry Requirements TEE English or TEE English Literature or ESL for eligible students. No other formal prerequisites, but Chemistry is strongly recommended as it will be taught on the assumption that all students have an understanding of the subject to at least the equivalent of the final year of their secondary education; Mathematics is also recommended. Students who have not completed sufficient Physics will be requested to take Physics 131 in place of an elective subject in first year.

2005 minimum TER N/A

Intake Period February only

Weekly first-year time commitment 25 hours plus own study time

What's it about?
Medicine offers a highly challenging area of study for the committed student who relates well to people and wishes to take on the rewarding work of being a doctor or specialist, or of pursuing research that may enhance public health.

The Faculty of Medicine and Dentistry provides a six-year full-time course of study leading to the award of the MB BS degree from The University of Western Australia. The first three years of the course are based largely at the Crawley and Queen Elizabeth II Medical Centre campuses where students have the advantage of studying the basic medical sciences in a multi-faculty environment, allowing them to mix with students from other disciplines. The University’s Medical and Dental Library and faculty administration are located within the QE II Medical Centre, which is adjacent to Western Australia’s major teaching hospital, Sir Charles Gairdner Hospital.

The Undergraduate Medical Course and its Philosophy
The structure of the course is an integration of basic science, clinical practice, community health and personal development with an initial focus on the scientific foundation of the principles of medical science, leading into a three-year clinical course involved in teaching the principles and practice of medicine. There is constant integration between the elements of the course. It is the aim of the Faculty and the University to continuously improve the quality of the course.

Career Opportunities
Career prospects exist in private practice, hospitals, government health departments, military forces and educational establishments (such as medical schools, where members of the academic staff may assume teaching and research responsibilities as well as patient care). A wide choice is available for graduates who wish to specialise. Graduates are required to complete 12 months’ pre-registration internship at an approved hospital before obtaining the full registration necessary to practise in the community. All UWA Medicine graduates gain employment as interns in the year following completion of their course. Excellent employment prospects continue in following years.

Course Requirements
The Medicine course is based around four themes which are developed throughout the course:
• the Scientific Basis of Medicine
• Doctor, Health and Society
• Doctor and Patient
• Personal and Professional Development.

The first year introduces the foundations of animal and human biology, genetics and clinical chemistry. In the second semester and continuing throughout the second year, the Scientific Basis of Medicine component of the programme is presented in body systems – the cardiovascular system, the respiratory system and so on. Students are introduced to the normal structure and function for each system which includes elements of anatomy, physiology and biochemistry.

The third year revisits systems teaching but with a focus on disordered structure and function, as they relate to disease, introducing pathology, microbiology and pharmacology. Running concurrently and integrated with the science teaching, are the remaining three themes of the course giving introduction to clinical practice, population health, rural health, general practice, communication and clinical examination of patients, cultural issues and aspects of professional development. Students are introduced to patients and their problems, epidemiological and public health issues, as well as to a wide variety of situations.

Years four, five and six concentrate more heavily on the Doctor and Patient stream involving the clinical aspects of medicine within hospitals and general practices, both urban and rural. The teaching is structured around blocks of general medicine, surgery, obstetrics and gynaecology, paediatrics, psychiatry and general practice. Clinical areas such as emergency medicine, palliative care, ear, nose and throat, anaesthetics, musculoskeletal disorders and ophthalmology are also covered. In addition, the Doctor, Health and Society, and Personal and Professional Development themes introduced in the first three years continue to be integrated throughout the clinical teaching streams. Relevant aspects of basic scientific material will also be incorporated into the clinical teaching streams.

Throughout the entire programme there are opportunities for students to choose optional study blocks of particular interest. In the final year this block may be taken in an overseas centre.

Medicine combined courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>Prerequisites</th>
<th>Standard length</th>
<th>Intake Period</th>
<th>2005 TER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicine and Surgery/Arts</td>
<td>TEE English or TEE English Literature or ESL for eligible students 1,2,3</td>
<td>7.5 years</td>
<td>February</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1 Some majors have additional prerequisites. Contact the Admissions Centre for details
2 Teaching in first year assumes knowledge of TEE Chemistry
3 Students without a pass in TEE Physics will be required to take a Physics unit in first year
4 ‘Standard length’ refers to the time taken to complete the course without a student overloading. Courses may be completed in a shorter time frame by overloading, with the faculty’s approval, at the time of enrolment

Visit the Medicine and Dentistry web site at www.meddent.uwa.edu.au
Alice Reaveley

My heart was set on studying anything to do with animals, especially native Australian fauna and their conservation, since the start of Year 11. As I’d always loved the campus and grounds of UWA, Zoology was an obvious choice of course. Combined with a parallel interest in Psychology, it was an interesting mix of majors that has always drawn enquiries as to whether I’m an animal psychologist. Not likely!

As the Bachelor of Science is such a broad degree it allows you to complete units from a variety of different disciplines before committing to a particular major/s. This is especially useful if you’re undecided about your career interests.

I have been working for the Department of Conservation and Land Management for the last five years and have held three different positions during that time. I entered the Department through the Graduate Recruitment Program after a year of employment as a Keeper at Perth Zoo, and substantial voluntary work with CALM to support my application for recruitment. There are many diverse opportunities within CALM, from regionally-based field officer and park ranger roles, to head office positions in the two main divisions of ‘nature conservation’ and ‘parks and visitor services’. My BSc certainly enabled me to secure an initial position, but most of my skills and knowledge has been acquired on the job.
Bachelor of Science

The University of Western Australia is home to two science faculties, the Faculty of Life and Physical Sciences and the Faculty of Natural and Agricultural Sciences. There are a number of options for studying science at UWA.

1

Bachelor of Science Three-year degree

The three-year BSc can be taken in one of two ways

BSc — Foundation package and major

Entry Requirements

TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics. (Some majors have additional prerequisites. Contact the Admissions Centre for details.)

2005 minimum TER 83.00

Intake Period

February and July

Weekly first-year time commitment 25 hours plus own study time

Choice of 37 majors

Students enrol in one of five Foundation Packages offered and choose their major/s once they have completed the equivalent of one full-time year of study. The Foundation Packages are as follows:

• Physical Science
• Earth Science
• Mathematical and Computer Science
• Life Sciences - human and behavioural
• Life Sciences - biological

Students graduate with a BSc, or if eligible, may gain entry to the BSc (Honours) or a specialist fourth-year degree.

See pages 61-64 for details of the majors available.

BSc — Specialised Programme

Choice of 22 specialised programmes

Students enrol in a particular specialised programme. Students graduate with a named degree, e.g. BSc (Exercise and Health Science), or if eligible, may gain entry to the BSc (Honours) or a specialist fourth-year degree.

See pages 65-91 for details of the specialised programmes available and their specific entry requirements.

2

Bachelor of Science Four-year degree in the Faculty of Natural and Agricultural Sciences

There are 14 four-year BSc degrees offered by the Faculty of Natural and Agricultural Sciences.

1 Bachelor of Science (Agricultural Economics)
2 Bachelor of Science in Agriculture
 (may be combined with either the Bachelor of Economics or Bachelor of Commerce)
3 Bachelor of Science (Animal Science)
4 Bachelor of Science (Biology)
5 Bachelor of Science (Conservation Biology and Management)
6 Bachelor of Science (Environmental and Natural Resource Economics)
7 Bachelor of Science (Horticulture and Viticulture)
8 Bachelor of Science (Land Rehabilitation)
9 Bachelor of Science (Landscape Management)
10 Bachelor of Science (Natural Resource Management)
11 Bachelor of Science (Wildlife Management)
12 Bachelor of Science (Geology and Resource Economics)
13 Bachelor of Science (Genetics and Breeding)
14 Bachelor of Science (Plant Genomics)

See pages 65–93 for details of these degrees and their specific entry requirements.

3

Bachelor of Science Specialist fourth-year degrees

The Faculty of Life and Physical Sciences offers a number of specialist degrees, which require a fourth year of study. Eligible students are able to apply for transfer into these specialist degrees on completion of the appropriate three-year BSc specialised programme or BSc with appropriate major/s. Entry to these programmes may require a minimum weighted average, and may be quota restricted.

SPECIALIST DEGREE
1. Bachelor of Exercise Rehabilitation Science
2. Bachelor of Molecular Biology
3. Bachelor of Psychology
4. Bachelor of Science European

REQUIRED SPECIALISED PROGRAMME OR MAJOR
BSc (Exercise and Health Science) — including specific units
BSc (Molecular Biology) — including specific units
BSc (Psychology) or equivalent, or BSc or BA with a double major in Psychology
BSc (European Language)

4

Bachelor of Science Combined with another degree course

The BSc can be combined with a variety of other Bachelor degrees as a combined programme of study. Refer to page 60 for details on these combined programmes.

Visit the Science web sites at www.science.uwa.edu.au and www.fnas.uwa.edu.au
I've always liked science and when I was applying for university I thought the Molecular Biology course sounded interesting. Throughout the course I've learnt a lot of biochemistry and genetics and also completed units specific to Molecular Biology. Specific units I found particularly useful were Bioinformatics in second year that included lectures on how computer technology makes possible the analysis of how similar proteins are, as well as a ‘mini-honours’ project in third year that really helped me prepare for fourth year.

As science research is basically undertaken by the same methods everywhere, studying science is a great opportunity to travel. I was awarded a Summer Scholarship at the Australian National University in Canberra over the summer last year, and really enjoyed it. I had never been over East before and got lots of sight seeing in Canberra and Sydney into the ‘working holiday’.

“This year I worked at the UWA Expo and extracted DNA from kiwi fruit, which was a lot of fun. I’ve written a few articles on science for the UWA publication ‘Pelican’ and really liked it so I want to be a science journalist.”

I would recommend the Molecular Biology course for anyone interested in science and finding out what DNA and proteins do.

For all courses TEE English or English Literature (or ESL for eligible students) is a prerequisite for entry as well as any other prerequisites listed below.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Prerequisites</th>
<th>Standard length</th>
<th>Intake Period</th>
<th>2005 TER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts/Science</td>
<td>any TEE Mathematics</td>
<td>4.5 years</td>
<td>February and July</td>
<td>90.00</td>
</tr>
<tr>
<td>Commerce/Science</td>
<td>any TEE Mathematics</td>
<td>4.5 years</td>
<td>February and July</td>
<td>90.00</td>
</tr>
<tr>
<td>Economics/Science</td>
<td>any TEE Mathematics</td>
<td>4.5 years</td>
<td>February and July</td>
<td>90.00</td>
</tr>
<tr>
<td>Commerce/Science in Agriculture</td>
<td>any TEE Mathematics</td>
<td>5 years</td>
<td>February and July</td>
<td>83.00</td>
</tr>
<tr>
<td>Economics/Science in Agriculture</td>
<td>any TEE Mathematics</td>
<td>5 years</td>
<td>February and July</td>
<td>83.00</td>
</tr>
<tr>
<td>Science/Education</td>
<td>TEE Applicable Mathematics and either TEE Chemistry or TEE Physics</td>
<td>4.5 years</td>
<td>February and July</td>
<td>82.00</td>
</tr>
<tr>
<td>Science/Engineering</td>
<td>TEE Applicable Mathematics, plus at least two of: TEE Calculus, TEE Chemistry, TEE Physics</td>
<td>5.5 years</td>
<td>February and July</td>
<td>93.00</td>
</tr>
<tr>
<td>Science/Law</td>
<td>any TEE Mathematics</td>
<td>6 years</td>
<td>February</td>
<td>97.00</td>
</tr>
<tr>
<td>Science (Geophysics) CLI/</td>
<td>TEE Applicable Mathematics, TEE Physics</td>
<td>4.5 years</td>
<td>February</td>
<td>87.00</td>
</tr>
<tr>
<td>Computer Science UWA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Students with a pass in Discrete Mathematics only will be required to take Mathematics in first year
2 Depending on Engineering Major
3 See the prerequisites for your intended Science major
4 Students with only two of the three subjects will be required to complete either an intensive bridging course in February before commencement of their first semester (Calculus) or an extra Level 1 unit in their degree (Chemistry, Physics)
5 ‘Standard length’ refers to the time taken to complete the course without a student overloading. Courses may be completed in a shorter time frame by overloading, with the faculty’s approval, at the time of enrolment
Anatomy and Human Biology
This major provides a rigorous, multi-disciplinary study of the biology of human beings, covering human functional anatomy (including reproduction, embryology and growth); microscopic structures of cells and tissues; the structure and function of the nervous system; genetics, variation, natural selection and evolution; ecology and behaviour. In Level 3, students can participate in research projects in any of these areas.

Anthropology
This major gives students cross-cultural knowledge and analytical skills that help to explain and interpret past and present human societies, ranging from small-scale, non-Western societies to complex, industrialised ones. Topics include migration, religion, politics, kinship, gender, health, legal cultures, economic life and the environment. Case-study material concentrates on Aboriginal Australia, Southeast Asia, and modern industrial/urban societies (including Australia). Anthropology can also be studied as a major within the Bachelor of Arts degree.

Archaeology
Archaeology is the study of past human societies through their material remains — the things people left behind them. Research and teaching in the Centre for Archaeology consider both prehistoric societies (those without writing) and the historic past; the main focus is on the Australasian region, but other topics offered include European prehistory, the art and architecture of the Greeks and Romans, and Viking archaeology. The course brings together theoretical understanding and practical skills in field techniques and applied archaeology. Archaeology can also be studied as a major within the Bachelor of Arts degree.

Biochemistry
Biochemistry studies the chemical processes by which life functions, including the storage, transmission and expression of genetic information, metabolism and adaptive mechanisms. These chemical processes are astonishingly similar in all living organisms, from the smallest bacterium to the largest whale. Biochemistry therefore has many applications, in fields ranging from medicine to agriculture. Units in molecular genetics and molecular biology are closely linked with those in biochemistry.

Biophysics
Biophysics combine the methods of mathematics, physics, chemistry and biology to study the structure of biological molecules and the physical principles involved in the machinery of life: how the brain processes and stores information, how muscles contract, how plants use light in photosynthesis, how genes are switched on and off, and many other questions.

Botany
Botany is, by definition, the study of plants. However, modern botany does not merely consist of collecting and describing flowers. It is an active area of research and teaching, involving as diverse as the promotion and growth in crop plants, using the most modern techniques of genetic engineering, through to the effects of pollution on marine plants, and including studies of our unique and fascinating native flora.

Chemical Physics
This major combines chemistry, physics and mathematics to study the atomic and electronic structure of matter, covering theory, properties and applications.

Chemistry
Chemistry investigates the properties of the elements and how they interact to produce minerals, energy and life. In your chemistry major you will study all the main branches of chemistry, and at Level 3 you can choose from a wide range of topics, including (for example) chemical synthesis, biological chemistry, analytical chemistry and industrial chemistry. Your extensive practical experience will include modern analytical and spectroscopic techniques such as nuclear magnetic resonance spectroscopy. See below for majors in environmental chemistry and materials chemistry.

Computer Science
Computing is about modelling real-world problems and processes in a way that can be implemented in a program. The major in computer science focuses on programming languages and the theory of computation, while majors in information technology systems and applications emphasise applied computing (see below for further details). All three streams are available in the BSc and also in the Bachelor of Computer Science and Bachelor of Computing and Mathematics (both administered by the Faculty of Engineering, Computing and Mathematics).

Environmental Chemistry
Chemistry is essential to the analysis and understanding of environmental systems and processes. Air, water and land are included in this comprehensive major. It may be combined with a general major in chemistry.

Environmental Geoscience
Environmental geoscience is the section of the earth sciences that looks specifically at the relationship between humans and their geological surroundings. Environmental geoscientists study the influence of geology on our lives and activities. Environmental geoscience is applied in a range of diverse situations, such as urban development, waste disposal, water quality management, engineering, soils and agriculture, and assessing natural and artificial hazards.
Genetics

Genetics is concerned with the study of DNA and its expression, be it a genetic trait that causes human disease, a rare plant that lives only on one isolated hill or a desirable characteristic in a breed of sheep. Genetics is cross-disciplinary: all biological sciences — such as botany, zoology, microbiology, human biology, pathology and medicine — cover at least some aspects of genetics, so that our understanding is advancing at a great pace and along a wide range of fronts. This major covers the essential principles and skills, and combines well with other biological majors. A more closely structured alternative is the specialised BSc (Genetics) programme.

Geography

Geography links the natural and social sciences through a wide range of topics in physical and human geography. The main areas of concentration are sustainable regional development and planning, environmental geography, coastal planning and management, and Australia and the Asia-Pacific region. A major in geography includes acquisition of innovative field and laboratory skills in environmental interpretation, spatial data analysis, community assessment and geographic information systems. Geography can also be studied as a major within the Bachelor of Arts degree.

Geology

Through the study of geology, students will be able to apply knowledge and techniques of chemistry, physics, biology and mathematics to the understanding of Planet Earth — its origin and history over thousands of millions of years, the processes affecting its surface and internal structure, the formation and limitations of natural resources, the evolution of life, and the likely future of our continents and oceans. Fieldwork is an essential and exciting feature of the course.

Human Movement and Exercise Science

In this major students investigate the science of movement, seeing how biomechanics, exercise physiology, sport psychology and motor skills contribute to performance in sports and other physical activities. The mix of core and optional units allows specialisation in several fields, such as physical and health education, exercise rehabilitation (continued in fourth year) and health promotion.

Information Technology Applications

Information Technology Systems

Information technology is the application of computer science to industry and commerce. It is by the triumphs of information technology that computer science is appreciated by the public. The main areas include databases (without which all large commercial organisations and government departments would quickly come to a halt); computer networks, including the ‘information super-highway’; computer graphics, with its ultimate development in virtual reality; expert systems, robotics and computer vision.

Land and Water Management

Land and water managers are responsible for the conservative use of these precious resources and their preservation for future generations. The course follows an integrated approach in which processes and interactions in natural and human-made land and water systems are identified. Students develop an understanding of how physical, chemical, biological and management factors interact.

Linguistics

Linguistics is the study of human language: what all languages have in common, and how individual languages differ from one another. In this major you will study how languages are structured,
how they are learnt (as first languages by children, and as second languages by adults), how they are used in social interaction, and how they change through time. You can study linguistics even if you speak only one language; what is more important is a curiosity about language and languages. Linguistics can also be studied as a major within the Bachelor of Arts degree.

Marine Biology
This major focuses on organisms in their environment: physiology, behaviour, ecology, systematics, and evolution. Marine Biology is for students who are passionate about all organisms in the marine world, from microbes to animals, from invertebrates to whales, and plants such as seagrasses and seaweeds. You will study these organisms in depth, as well as their relationships with their environments.

Marine and Coastal Management
This major is for students who feel strongly about protecting our coastal and marine environments and wish to have a career making a difference in this area. You will learn how to manage human use of the physical environment by studying the environment itself, as well as how to balance our needs with those of the coastal and marine zones. You will develop an understanding of coastal management conflicts, as well as how to resolve these issues.

Materials Chemistry
Materials science is crucial to the viability of Australian industries, for instance in the development of biomaterials, ceramics, alloys, electronics and telecommunications. This major combines a foundation in all the main branches of chemistry with a specialisation in Level 3. It may be combined with a general major in chemistry.

Mathematical Sciences

Applied Mathematics
Pure Mathematics
Mathematical Statistics

Mathematics is humanity’s most powerful tool for comprehending the universe, and an essential tool for many fields of modern endeavour — commerce, management, communications, transport, medicine, science and engineering, to name some examples. Mathematicians contribute creatively to almost every aspect of modern life. A major in applied mathematics focuses on applications in the physical world and engineering among others, while pure mathematics considers a more general and abstract study of mathematical concepts. Mathematical statistics provides theoretical background to the many applications of statistics. A major in mathematical sciences can combine units from the different specialisations.

Microbiology
Environmental Microbiology

Microbiology is the study of microscopic organisms, from the smaller fungi and algae to bacteria and the smallest organisms of all, the viruses. They affect the health of human beings, animals and plants in many ways — from epidemic diseases to threats of bioterrorism or the clean-up of oil spills. Microbiologists tackle problems in infectious diseases, immunology and environmental imbalance, or use micro-organisms to contribute to human welfare in biotechnology and genetic engineering.
Pathology
Pathology investigates biological abnormalities, especially in human disease, and the mechanisms an organism may employ to defend itself against the harm it must encounter throughout its life. Understanding these processes often requires highly sophisticated technology and a ready grasp of many of the related biological and physical sciences. This major therefore involves a range of disciplines at Levels 1 and 2 before specialising in pathology at Level 3.

Pharmacology
In this major you will study how drugs work. In this context the term ‘drugs’ includes all sorts of chemicals that affect humans and animals, and pharmacology contributes not only to the development of new, safe treatments for disease, but also to our understanding of how the body works. Basic pharmacologists develop new drug molecules and study their action and side-effects, while clinical pharmacologists are more involved with the use of drugs in human health and disease.

Physics
Physics involves the study of the world about us at the most fundamental level, from cosmological to subatomic scales. The technology that allowed the electronic editing and storage of the words you are reading is but one result of an understanding of natural properties and processes that is unprecedented in detail, scope and potential. A major in physics will take you from the classical principles of the discipline to its present frontiers, with topics ranging from astrophysics and cosmology through to areas such as laser physics, quantum wires and dots, atomic and molecular physics and particle physics.

Physiology
Cell Physiology
Anyone seriously interested in understanding how the human body functions would benefit from a study of physiology. You will investigate how complex living organisms such as human beings work, from the molecular and cellular levels to the integrated functioning of all the organ systems in the body. Building on a basis of chemistry and biological science, units in physiology are offered from Level 2 onwards. Combinations with mammalian cell biology or advanced neuroscience are possible, while cell physiology includes advanced molecular biology.

Psychology
Psychological Studies
Psychology is the systematic study of mental processes, based on observations of behaviour in humans and other animals. A single major (Psychological Studies) gives you a choice of units in aspects such as social, developmental or cognitive psychology, providing a useful preparation for any occupation working with people. If you are interested in a career as a registered psychologist you should complete a double major in Psychology through the BA or BSc (Psychology), followed by an honours year or the Bachelor of Psychology. A further two years of postgraduate training or supervised experience are required for full registration.

Soil Science
Soil Science is a diverse discipline and has many options for specialisation in the geological, chemical and physical aspects of soil. It is frequently combined with majors in botany, geology, physics, chemistry, geography or microbiology and contributes to majors in environmental geoscience and land and water management. The broad base of soil science provides a solid foundation to investigate land conservation and rehabilitation issues. Soil Science covers pedology, mineralogy, physics, chemistry, and aspects of plant nutrition and soil microbiology.

Zoology
Zoology is a dynamic area of science with a common focus on animals: how they function, how they interact and how they have evolved. Zoologists are concerned with theoretical problems as diverse as molecular evolution, animal development, reproduction and community ecology and with applied problems that range from fauna conservation to stream ecology and water quality studies.
Bachelor of Science
(Advanced Science)

Length of course 3 years (accelerated) or 4 years (enriched) full-time.

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and a final scaled score of 85 in all science subjects, including at least one Mathematics subject. Applicable Mathematics is recommended, and one or more of Chemistry, Physics, Calculus, Biology and Human Biology is desirable

2005 minimum TER 98.00

Weekly first-year time commitment 16 hours plus own study time

What’s it about!
This programme allows high achieving students to study science in a wider social context, and the opportunity to accelerate their course by going straight into Level 2 units where appropriate. In addition, students get to work on group projects and gain early experience in research and research management. To continue in the programme, students must achieve a weighted average of at least 80 per cent in each year of study. Honours is an integral part of this programme. High performing students will find the course a challenging and rewarding experience.

Career Opportunities
During the course of this programme, opportunities are provided for a range of industrial placements, as well as political and government agency internships. Graduates of the degree can look forward to a wide range of career options in science administration, science policy and management, with the option of continuing further in research if desired.

Course Requirements

LEVEL 1
A biological science
A physical science
Group Project
Science electives

LEVELS 2 AND 3
Completion of at least one science major
Research project
Placement in industry or peer teaching

Advanced science has offered me so many opportunities which I never thought that I would get doing an undergraduate degree.

“Every year I’ve done a research project in a different field which led me to getting a job as a research assistant in physiology in second year. I even got to travel over to Singapore and do a research project for two months (all expenses paid!) earlier this year, which was one of the best experiences of my life.”

I’m finishing my course this year, majoring in physiology and pharmacology because I loved the idea of being able to explain everything that was happening inside my body. Next year I’ll be doing honours, most likely looking at Alzheimer’s disease and hopefully will end up doing medical research one day. The beauty of Advanced Science is that you can tailor-make your course, so if you’re looking to do a course that will give you that edge over others in experience while still doing exactly what you want to do, I would fully recommend you try Advanced Science.
Bachelor of Science in Agriculture

Length of course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

2005 minimum TER 80.00

Intake Period February and July

Weekly first-year time commitment 24 hours plus own study time

What's it about?
Modern agriculture in all countries is becoming increasingly dependent on scientific input. To succeed farmers must rely heavily on plant and animal breeders, microbiologists, soil scientists, nutritionists and many other specialists to give them a competitive edge.

The internationally recognised Bachelor of Science in Agriculture degree is the formal qualification for people who will fill this role in agriculture. Students who undertake the degree have a strong aptitude for science and economics but, above all, a motivation to direct their scientific and economic skills towards the world’s food and fibre industries.

Career Opportunities
Career opportunities for graduates in Agricultural Science extend over many activities directly or indirectly associated with private and public employers in agriculture, processing, farm management, consulting, marketing and overseas trade; universities (both teaching and research); agricultural colleges and high schools; banks; insurance companies; agricultural, chemical and stock companies; and biotechnology companies.

Course Requirements

LEVEL 1
- Biology
- Chemistry
- Ecosystem Processes
- Economics
- Mathematics

LEVEL 2
- Agricultural Microbiology
- Animal Science
- Biochemistry
- Biometrics
- Natural Resource Economics
- Physical and Chemical Aspects of Soil Science
- Science and its Communication
- Whole Plant Physiology

LEVEL 3
- Biometrics
- Science, Industry and Community and electives such as:
 - Agricultural Systems and Extension
 - Genetics and Animal Breeding
 - Industry Experience
 - Integrated Pest Management
 - Rainfed Cropping Systems
 - Soil Systems and Management

LEVEL 4
- Agriculture Research Project (worth 50 per cent of your mark for fourth year) and electives such as:
 - Animal Science and Technology
 - Applied Microbial Ecology
 - Economics of Water Management
 - Physical and Chemical Processes in Soils
 - Rainfed Pasture Systems
 - Rangeland Ecology and Management

Ben Ball

Being raised on a property in Wagin but schooled in Perth I feel I’ve been exposed to the best WA has to offer. To study Agricultural Science at UWA was a last-minute choice at the conclusion of the TEE but the decision has proved to be an extremely worthwhile and rewarding one. Exposure to world-renowned academics in the Faculty coupled with contact with members of the industry from farmers to agronomists makes for a highly interesting and diverse course. Agriculture is widely renowned as a growth industry and this is reflected in the job opportunities for graduates of this programme. My personal options for 2005 range from Agronomy (Elders, Landmark, Synergy Consulting) to Fertiliser (CSBP, Summit) anywhere in the State. Opportunities also exist for Grains Research and Development Corporation (GRDC) PhD Scholarships.

“If you have a passion for Agriculture and are interested in the scientific principles on which current and future practices and recommendations are based, then this is definitely the course for you.”

Or, if you think you would enjoy a Faculty that has seven major scheduled social events a year through the Ag. Club Social Committee you will be more than happy here.
Bachelor of Science (Animal Science)

Length of course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

2005 minimum TER 80.00

Intake Period February and July

Weekly first-year time commitment 24 hours plus own study time

What’s it about?
This internationally-recognised course of study is for students who wish to develop careers in the study, care and management of animals, particularly production animals and wildlife. Graduates will be trained for careers in wildlife management and conservation, and animal care and management for research, parks and zoos, as well as in the production animal sciences (fibre, meat, dairy, aquaculture).

Students will learn about the nutrition, genetics, reproduction, ecology, ethics and welfare of animals.

Career Opportunities
There is a wide range of employment opportunities for graduates in animal science including the fibre, agricultural, food, biomedical science, fisheries and pastoral industries. You may find positions in either the private or public sector and state or federal government departments. Examples include positions with animal and wildlife conservation and welfare groups, natural resource management organisations, wildlife parks or zoos, research institutions, universities and colleges of advanced education, agricultural, stock or chemical companies and biotechnology companies.

Course Requirements

LEVEL 1
- Biology
- Chemistry
- Economics
- Ecosystem Processes
- Mathematics

LEVEL 2
- Animal Science
- Biochemistry
- Biometrics
- Natural Resource Economics
- Genetics
- Whole Plant Physiology
- Science and its Communication
- Soil Science

LEVEL 3
- Agricultural Microbiology
- Animal Ethics and Welfare
- Animal Nutrition
- Biometrics
- Science, Industry and Community
- and electives such as:
 - Animal Ecology
 - Animal Production
 - Aquaculture
 - Behavioural Ecology
 - Industry Experience
 - Marsupial Biology

LEVEL 4
- Animal Science Research Project (worth 50 per cent of your mark for fourth year)
- and electives such as:
 - Animal Science and Technology
 - Aquatic Biology
 - Comparative Neurobiology
 - Genetics and Animal Breeding
 - Molecular Genetics in
 - Managed and Natural Systems
 - Wildlife Conservation and Management

Bronwyn Edmunds

I always wanted to work with animals. When I discovered that being a vet was not the job for me, I was at a loss as to what else I could do. Upon reading the UWA prospectus I saw two magical words, ‘Animal Science’.

“This degree has been amazing. I’ve performed surgery on sheep, used artificial insemination techniques, trapped and handled native animals and visited many successful farms.”

The great thing about this degree is that it gives you choices. I always wanted to work with wildlife however, in my last year I have focused on the agricultural side of things, which has been just as rewarding. Wildlife and agriculture are always going to be there and so are the many jobs that go with them. This degree is a great career choice and has been a fun and rewarding four years. I hope to go on to do a PhD specialising in animal nutrition.

Visit the Natural and Agricultural Sciences web site at www.fnas.uwa.edu.au
Bachelor of Science (Biomedical Science)

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics. Chemistry is desirable

2005 minimum TER 83.00

Intake Period February and July

Weekly first-year time commitment 20 to 25 hours plus own study time

What’s it about?
New approaches to preventing, diagnosing and treating disease are increasingly dependent on an understanding of how the body functions at the molecular, cellular, organ and whole-body level. This detailed knowledge underpins strategies for gene and cell therapy, organ transplantation, and intervention by modulating cell function using recombinant products to detect and treat cancer, genetic and infectious diseases.

The BSc (Biomedical Science) course combines a range of subjects that are contributing significantly to developments in modern medicine. The programme is designed for students who seek a medically-related career other than as a practising physician.

Career Opportunities
Career opportunities are expanding rapidly in line with the growth in molecular and biotechnology research resulting from the Human Genome Project, and projects sequencing other genomes. Other employment opportunities include science curator, medical scientist, research officer at university or hospital-based laboratories, pharmaceutical project leader, medical sales representative, graduate assistant in hospital laboratories in research or routine diagnostics, laboratory technician, laboratory biochemist, patent evaluator/examiner, chief executive officer in biotechnology companies.

Course Requirements
LEVEL 1
Biology/Human Biology/Molecular Biology
Chemistry
Mathematics and Statistics
Electives

LEVEL 2
units chosen from:
Chemistry
Biochemistry
Human Biology
Microbiology
Molecular Biology
Genetics
Pharmacology
Physiology

LEVEL 3
units comprising one or two of the following majors:
Integrative Biology
Cell Biology
Molecular Medicine

Out of Year 12 I was unsure of what I wanted to do. All I really knew was what I didn’t want to do. I had really enjoyed Human Biology in Year 12 and as an alternative to medicine, enrolled in the Biomedical Science course at UWA. It had all of these interesting components to choose from, and you didn’t have to start choosing a major pathway until second year, and then you still had a lot of options; it was perfect for me.

I got a chance to learn about the human body in a wide range of disciplines, including anatomy and human biology, physiology and pharmacology. I found in second year that I really enjoyed the challenges of neuroscience as well as human physiology and in third year have gone on to major in physiology while still picking up an advanced neuroscience unit.

Coming out of Biomed I have so many options to choose from that I’m still undecided on my future; honours, research projects or a gateway to postgraduate science or medical studies.

The course is fantastic for anyone interested in the human body from molecules to gross anatomy. I would recommend it to anyone that is a little unsure about which science course to take, and it can only give you more options if you decide to continue on after it.

“UWA is the most fantastic university for social and sporting events as well as learning so I can honestly say that my years at UWA have been the best of my life.”

Visit the Life and Physical Sciences web site at www.science.uwa.edu.au
Bachelor of Science (Biophysical Science)

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students), TEE Applicable Mathematics, TEE Chemistry and TEE Physics. TEE Calculus is highly recommended.

2005 minimum TER 83.00

Intake Period February and July

Weekly first-year time commitment 20 to 25 hours plus own study time

What’s it about?
If you are curious about biological processes and would enjoy unravelling complex problems, designing experiments or using computers to analyse and model situations in real life, then you will find many exciting opportunities in Biophysical Science. Students combine the skills and approaches of physics, chemistry, mathematics and biology to study how living organisms work. Biophysical scientists investigate how the brain processes and stores information, the heart pumps blood, muscles contract, plants use light in photosynthesis, genes are switched on and off, and many other living processes.

Career Opportunities
The discoveries of biophysical scientists have a broad impact on biotechnology and medicine. Graduates work in universities, industry, medical centres, research institutes and government. Job prospects for graduates are very positive, especially considering the enormous interest and investment shown by medical and pharmaceutical companies in the areas of membrane biophysics and biomolecular design and synthesis. Expanding opportunities also exist in medical physics, biomedical imaging and related areas of research and development.

Course Requirements

LEVEL 1
Physics
Chemistry
Mathematics and Statistics
Biology/Human Biology/Molecular Biology

LEVEL 2
at least one of:
Biophysics
Chemistry
and units chosen from:
Biochemistry
Molecular Biology
Pharmacology
Physiology
Bioinformatics
Computer Science
Mathematics

LEVEL 3
at least one of:
Biophysics
Biophysical Chemistry
if necessary, units chosen from:
Biochemistry
Chemistry
Molecular Biology
Pharmacology
Physiology

Science has always been one of my favourite subjects, however when making my decision on what university course to do which would ultimately lead on to a career, I could not narrow down my preference to a specific scientific career path. I chose to do a Bachelor of Science at UWA because the course gave me a range of subject options. I soon found that my interest lay in the way that Physics could be applied to biological and medical applications and hence majored in Biophysics and Physiology. I now work as a Radiation Physicist in the Medical, Technology and Physics Department at Sir Charles Gairdner Hospital. I love the diversity of tasks that I do as a physicist in a hospital. These include producing radiopharmaceuticals via a cyclotron and hotcell laboratory, doing calculations to assess potential radiation doses to patients and hospital staff, quality testing hospital X-ray equipment, giving courses to medical staff and doing research in new areas.

“My job provides me with interesting projects, the opportunity to liaise with a wide variety of people, the opportunity to travel and present my work to peers and good opportunities for career progression. I am very happy with my choice of university course and where it has led me.”
Bachelor of Science (Communication Studies)

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics, further prerequisites for some majors

2005 minimum TER 83.00

Intake Period February and July (a July intake is not suitable for majors in Mathematics or Physics)

Weekly first year time commitment 20 to 25 hours plus own study time

What's it about?
Great science communicators such as David Suzuki, Dr Karl Kruszelnicki and Sir David Attenborough share a love of science, as well as a passion for communicating with the public about science. The BSc (Communication Studies) enables you to complement scientific knowledge with highly employable skills in written and verbal communication. Science communication is about learning to bridge the gap between the scientific community and the public about issues such as genetically-modified food, controlled burning, radiation risks and global warming.

Career Opportunities
Excellent communication skills will not only give you an advantage over a conventional science degree but will also expand your career options. These include positions with museums, science journalism (including popular science writing, the press, television and radio), government-funded organisations, science and technology industries, mining companies, community health, government departments and public relations companies.

Course Requirements
LEVEL 1
Foundation package in Science
Two units of Social Science, Molecular Biology, Information Technology or Astronomy

LEVEL 2
Science Communication Writing
Science Communication Talking
units leading to a Science major
units in a second discipline

LEVEL 3
Science Communication Practicum
Science Communication Special Topics
Science Communication Strategies
completion of an approved science major

Robert Browning

TV presenters, public relations officers, journalists, politicians, radio presenters — these are all high-profile, highly-paid jobs that require skilled professionals who can communicate effectively.

At the end of my BSc (Communication Studies) I expect to have all the skills I need to be well placed into one of these professions. At the moment I don’t know exactly where I’ll end up, but this specialised degree will take me places no ordinary science degree could.

Science Communication units are completely practical, the assignments give a flexibility to be assessed on whatever topics you choose.

“Press releases, movies, strategy evaluation, and practical placement into relevant science centres (e.g. Scitech, WA museum, government agencies, radio) are all part of the learning experience.”

The BSc (Communication Studies) will also give you invaluable teacher–student contact. Lecturers involved in this programme are more than happy to help you in any way they can. There are few degrees at UWA that can be tailored to suit individual students’ own strengths, and this makes this degree truly unique. As a student you will learn how to communicate science but also how to give it personality.
Bachelor of Science (Conservation Biology)

Length of course: 3 years

Entry Requirements: TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

2005 minimum TER: 83.00

Intake Period: February and July

Weekly first-year time commitment: 25 hours plus own study time

What’s it about?
The BSc (Conservation Biology) is concerned with the basic biological knowledge that relates directly to the conservation of flora and fauna. As humans change the environment at increasing rates, our need to understand the impact of these changes upon plants and animals, as well as how to mitigate these changes, increases also. The southwest of Western Australia is one of only 34 ‘Biodiversity Hotspots’ worldwide, making WA an ideal laboratory for the study of this area. In addition, the course involves three units which each involve at least one week of work in the field.

This course allows you to combine your specialisation in Conservation Biology with another area of interest, such as Botany, Marine Biology or Zoology.

Career Opportunities
Graduates will be in demand in government agencies that deal with conservation, natural resource management groups, zoos, and private consultancies. Because you will be well-trained scientists, your skills in problem solving, information analysis, report writing and decision making will be sought after by many employers, allowing graduates to be employable in areas outside of conservation biology.

Course Requirements
LEVEL 1
Biology
Chemistry
Mathematics
Earth and Environmental Science

LEVEL 2
Introduction to Conservation Biology
Introduction to Genetics
Conservation of the Biodiverse Shrubland and Bushland (fieldwork-based)
Introduction to Ecology
units leading to a second major

LEVEL 3
Conservation of the Forest Environment (fieldwork-based)
Conservation of the Marine Environment (fieldwork-based)
units leading to a second major

Patrick Mitchell

The environment has always fascinated me ever since I moved to the bush when I was young. I guess this fascination has now become more of a full-blown career as I am now undertaking a PhD research thesis within the School of Plant Biology and the Co-operative Research Centre for Plant Based Management of Dryland Salinity at UWA. My interests lie in tackling salinity through an understanding of the native vegetation and how it manages to buffer the landscape against salinity. After doing my undergraduate and honours degrees at different universities, I quickly settled in at UWA thanks to helpful supervisors and a supportive postgraduate students association.

The PhD programme at UWA is both rewarding and challenging, and it allows me to manage and co-ordinate my own project with the support of my supervisors and fellow students.

“My project gives me the chance to work both in the bush and in the lab or office, and to travel both nationally and internationally to communicate my research to a broad audience.”

In the future I would like to work in Australia and overseas and apply my skills and knowledge to developing agricultural systems that are both productive and sustainable.
Bachelor of Conservation Biology and Management

Length of course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

2005 minimum TER 80.00

Intake Period February and July

Weekly first-year time commitment 24 hours plus own study time

What’s it about?
The Bachelor of Conservation Biology and Management is concerned with the basic biological knowledge that relates directly to the conservation of flora and fauna. As humans change the environment at increasing rates, our need to understand the impact of these changes upon plants and animals, as well as how to mitigate these changes, increases also. The southwest of Western Australia is one of only 34 ‘Biodiversity Hotspots’ worldwide, making WA an ideal laboratory for the study of this area. In addition, the course involves three units which each involve at least one week of work in the field.

The Bachelor of Conservation Biology and Management differs from the BSc (Conservation Biology) in that students combine their science focus with a strong background in management. Students in this course will also complete a supervised research project in their fourth year.

Career Opportunities
Graduates will be employable by government agencies responsible for the environment, conservation, and natural resource management, as well as research agencies. Your skills in management will make you attractive to employers who are in need of graduates capable of both analysing and solving conservation-related problems. Also, because you will be a well-trained scientist, your skills will be sought after by many employers, making graduates employable in areas outside conservation biology.

Course Requirements
LEVEL 1
Biology
Chemistry
Economics
Ecosystem Processes
Mathematics

LEVEL 2
Introduction to Conservation Biology
Conservation of the Biodiverse Shrubland and Bushland (fieldwork-based)
Introduction to Geographic Information Systems
Biometrics
Economics
Introduction to Genetics
Introduction to Ecology

LEVEL 3
Conservation of Forest Environments (fieldwork-based)

LEVEL 4
Conservation of the Marine Environment (fieldwork-based)
Biometrics
Advanced Geographic Information Systems
plus electives

LEVEL 4
Conservation Decision Tools
Risk Management
Supervised Research Project (worth 50 per cent of your mark for fourth year)
plus electives

Kristen Bleby

When deciding what I would like to study at UWA, I knew that I was interested in doing a degree involved in the environment, but I did not know which area of environmental science I wanted to focus on. I chose the Natural Resource Management degree because it offered the opportunity to study many different aspects of the environment. I particularly enjoyed the wildlife management and conservation units, and their field trips that allowed me to experience wildlife conservation first hand. Hence, I concentrated on this area in the final two years of my degree. I completed two weeks of work experience at the Perth Zoo, and my fourth year honours project investigated the behaviour of the dibbler, an endangered carnivorous marsupial, in captivity. I enjoyed my honours research project so much that I began a PhD in wildlife conservation after graduating. I hope to continue working in wildlife conservation research, possibly in a post-doctoral position overseas. Currently, I am working at an environmental consulting firm gaining experience in environmental regulation and assessment.

“ Degrees such as Conservation Biology and Management are good choices because they offer a variety of theoretical and practical experience, which can open up a wide range of career opportunities. ”
Bachelor of Science (Earth Science)

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

2005 minimum TER 80.00

Intake Period February and July

Weekly first-year time commitment 25 hours plus own study time

What’s it about?
Earth Science encompasses all aspects involved in the study of the Earth including surface landforms and features, the movement of water, the role of climate, formation of soils and vegetation, and processes in the Earth’s interior. Earth Science involves the application of physics, chemistry, biology and mathematics to understanding these processes and solving problems related to Earth environments.

Career Opportunities
The Bachelor of Science (Earth Science) leads to careers working with natural resources. You may work in the mineral and energy industries, environmental science and environmental management, management of groundwater and soil, or even ecotourism and regional development.

Course Requirements
LEVEL 1
Earth and Environmental Science
Chemistry
Mathematics
Physics
Biology or Human Biology

LEVELS 2 AND 3
Your units will depend on how you choose to specialise; examples include:
Analytical and Physical Chemistry
Coastal Geomorphology and Sediments
Environmental Geomorphology of Sheltered Coasts
Environmental Hydrology
Field Methods for Earth Scientists
Geographic Aspects of Sustainability
Geographic Information Systems
Ore Deposit Genesis
Structural Geology and Tectonics

When most people think of geology they think of rocks, when I think of geology I think of exciting places and lots of fun.

“...I originally chose geology because I was ok at it in high school and could not think of anything else I really wanted to do. However, looking back, studying Earth Sciences was the best experience I have had to date."”

I was lucky enough during my undergraduate studies to choose a course that lets you get outside, see the country and get dirty!

As part of my honours degree I was able to have the opportunity to study in East Timor, one of our nearest neighbours. I was working with local students and the government departments in a programme that allowed me not only to learn but to give something back and teach the locals about their land. At the moment industry is booming in the mining sector and there are plenty of jobs available.

Thanks to the course being smaller there is more opportunity to form bonds with the people you see everyday. Earth Sciences has definitely made me appreciate my surrounding environment when compared to the rough and rugged environment that surrounds other people.
Bachelor of Science (Environmental Science)

Length of course: 3 years

Entry Requirements: TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

2005 minimum TER: 83.00

Intake Period: February and July

Weekly first-year time commitment: 20 to 25 hours plus own study time

What’s it about?
Environmental issues are many and varied. Some are of global significance like the hole in the ozone layer or greenhouse gas emissions. Others are of local or continental significance such as the inter-related problems of people, recreation and fauna conservation in metropolitan wetlands, control of groundwater flows after mining, or flora and fauna conservation. One common feature of environmental problems is that they involve processes that extend over several disciplines.

This University has a long tradition of research and teaching on a broad range of environmental issues. This degree will give the student a basic, scientific training in one or two areas of science relevant to environmental problems as well as an introduction to legal, economic and political issues that impact on these problems. The student’s specialist skills will be defined by a major area of study.

Career Opportunities
With the increasing attention that government and industry are required to give to environmental issues, job prospects for graduates are likely to be many and varied. Currently graduates from this University with skills in Environmental Science are working for a variety of government departments (e.g., Conservation and Land Management, Environmental Protection, Agriculture), private industry (e.g., mining companies), local governments, or running their own consultancy businesses.

Course Requirements
LEVEL 1
Biology
Earth and Environmental Science
Chemistry
plus additional units to make up required points

LEVELS 2 AND 3
Your units will depend on how you choose to specialise; examples include:
- Environmental Law and Policy
- Environmental Economics
- Behavioural Ecology
- Biological Oceanography
- Environmental Change
- Environmental Hydrology
- Geographic Aspects of Sustainability
- Plant Conservation and Restoration Biology
- Vertebrate Adaptation

I’ve always had an interest in nature and that’s what led me to enrol in Environmental Science. Of course, I had no idea what I actually wanted to do with myself, but it sounded cool at the time.

“...When it came time to pick my units, really I just picked the ones that interested me the most because I knew that if I wasn’t going to enjoy what I was studying then I would probably have a horrible year. But I didn’t, I had a great year and I met heaps of great people who have the same interests that I do."

At the moment I’m really happy with what I am doing because I’ve learnt about so many different things. In Environmental Science, you get to study how the world works through the scientific aspects of the course, but you also learn about how people interact and relate to the environment. I don’t know what sort of job I will end up with in the future, but I do know that I want to work with people like myself for a sustainable future in Australia.
Bachelor of Science (European Language)

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students), any TEE Mathematics, French, German, or Italian and any specific prerequisites for science major

2005 minimum TER 83.00

Intake Period February

Weekly first-year time commitment 20 to 25 hours plus own study time

What’s it about?

BSc (European Language) allows you to pursue studies in both science and language. Students complete a science major, plus a major in French, German or Italian. Students work with staff who have extensive European connections, gaining new perceptions of science through an international focus.

Upon successful completion of the BSc (European Language), students may then apply for the BSc European. This involves a year of study undertaken at a partner university in Europe, where students gain research experience working for at least six months, or a science project related to the science majors they have undertaken in the BSc (European Language). Importantly, it will provide experience in international science administration and research while you gain experience in the language you have been studying.

Career Opportunities

Laboratory scientist positions exist in numerous major companies based in Europe, including those involved in pharmaceuticals, electronics and scientific instrument manufacturers. Many of these companies also employ sales and maintenance representatives. Major international bodies such as various United Nations organisations employ English-speaking scientific experts and advisers who are multilingual. Similar positions also exist within the Australian diplomatic corps around the world, including Europe. You could work as a teacher of both science and language studies in Australia or Europe, with the ability to add new cultural dimensions in both areas. And if you choose to work in Australia, there are many positions that require close collaboration with non-English speaking colleagues overseas, in French, German or Italian-speaking countries.

Course Requirements

LEVEL 1
units fulfilling the specific requirements of a foundation package in Science.
French, German or Italian units

LEVELS 2 AND 3
units fulfilling the requirements of a major sequence in Science French or German units
Other science units

Bachelor of Science European

Required Specialised Programme/Major: BSc (European Language) or equivalent, with a major in French, German or Italian.

This is a fourth-year programme where you will spend up to one year participating in a major research project at a partner university in France, Germany or Italy, enhancing your specialist knowledge and research experience with a multi-faceted outlook on today’s world. The career opportunities for people with linguistic as well as science skills are truly international. Job openings range from multinational corporations to various United Nations organisations, as well as the option of conducting postgraduate study in a foreign country: all choices that provide graduates with the opportunity to become true ‘global citizens’.

If applying for entry to this course you must contact a Faculty adviser and/or the honours co-ordinator in your major scientific discipline. Visit: www.science.uwa.edu.au

After leaving high school I did not think it was possible to study both my loves — science and the languages — but this course gives me a great opportunity to do so! I chose the course Science (European Language) over a diploma in Modern Languages as it offers a fourth year of honours study in Europe which sounded fantastic to me!

I am currently in my second year of this degree with a science major of Zoology and a language major of German. These two majors have fuelled my interest for the international side of science with a wish for a career in eco-tourism or science communication.

“By studying the course I have also been eligible for and received a scholarship to study German in Munich for a month — a great opportunity to broaden my German knowledge and a great stepping stone for a possible fourth year of honours study in Germany.”

I think that studying a European Language with a Science major creates great future opportunity for travel and employment and also adds balance and interest to your studies.
Bachelor of Science
(Exercise and Health Science)

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics; Human Biology is desirable

2005 minimum TER 81.50 (Commonwealth supported) 81.50 (Australian fee-paying)

Intake Period February and July

Weekly first-year time commitment 20 to 25 hours plus own study time

What's it about?
This three-year degree course combines expertise in sport and health science with communication skills and practicum experiences to produce a well-rounded graduate. The mix of core and elective units allows students to specialise in sport science, rehabilitation science, teaching or health promotion.

Career Opportunities
Specialisations prepare graduates for careers working with elite athletes and institutes of sport; with the general public in the fitness and health industries; as exercise rehabilitation specialists; school physical and health education teachers; or university researchers/academics.

Course Requirements
LEVEL 1
Human Movement
Human Biology
and units from the following:
Health and Fitness
Psychology
Mathematics
Chemistry
Anthropology
Physics
Earth System Science
Economics and Commerce units
Information Technology

LEVEL 2
Units chosen from the following:
Motor Control Development and Learning
Biomechanics
Exercise Physiology
Psychosocial Aspects of Human Movement
and Exercise Science
Physical Activity and Health
Elective units depending on stream chosen

LEVEL 3
Units chosen comprising one of the following majors:
Exercise and Sport Science
Physical and Health Education

Bachelor of Exercise Rehabilitation Science

Required Specialised Programme: BSc (Exercise and Health Science)
This degree course offers students the opportunity to gain an understanding of the role of exercise in assessing and managing various pathological conditions. It focuses on the indications, contra-indications and application of exercise rehabilitation. The course provides a holistic approach to the use of exercise as a technique for managing musculoskeletal, metabolic and cardiovascular disabilities. A key aspect is practicum experiences, which satisfy specialist accreditation requirements of the Australian Association for Exercise and Sport Science. Graduate employment opportunities include hospital-based rehabilitation programmes — cardiac and orthopaedic; industry-based employee health and rehabilitation; occupational preventive health; hospital cardiac fitness assessment technicians; sports club fitness and exercise rehabilitation trainers; and gait and movement dysfunction analyses. Students must have attained a weighted average of 60 per cent in specific human movement units in order to be eligible for the course. Visit: www.hmes.uwa.edu.au

Ed Weston

I had always been a big sports, health and fitness enthusiast fascinated by the human body, but considered it more of a hobby than a career choice. Despite working hard at school, opening up my university options, like most school leavers I hadn’t a clue about what I should or wanted to do. Upon hearing great reports from friends taking units in Exercise and Health Science I decided to give it a go and instantly became inspired.

“University became fun, not a boring ‘rite of passage’ and I worked hard because I was curious to learn more.”

Having finished my undergraduate degree I travelled to the UK and worked in the fitness industry where I found my acquired knowledge far exceeded those around me. Recently, I commenced work for the Water Corporation as a consultant working in safety to prevent back injuries, travelling all over the State to deliver training sessions. I found Exercise and Health Science opened up a number of career paths and options of postgraduate specialties. I made many friends of both students and staff and strongly recommend this course if your interests are in being active, healthy and leading a different, rewarding career.
Bachelor of Science (Genetics)

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

2005 minimum TER 83.00

Intake Period February

Weekly first-year time commitment 20 to 25 hours plus own study time

What's it about?
The science of genetics has grown at an explosive rate during the last 50 years and now affects virtually every aspect of our lives. The advent of the Human Genome Project has turned genetics into a powerful science that is the focus of much research throughout the world. Complete sequence descriptions of genomes, from organisms as diverse as worms, rice and dogs, have created many new fields of scientific endeavour, giving rise to unprecedented technological advances. Numerous practical applications of genetics have been documented in fields such as medicine, forensics, agriculture and pharmaceuticals. This programme is designed to give a focused induction into the world of genetics. Emphasis is placed on new and exciting fields such as molecular genetics, bioinformatics and genomics.

Career Opportunities
The BSc (Genetics) programme will prepare you for entry into a wide array of career choices. Opportunities exist in the fields of pharmaceuticals, agribusiness, biomedicine and biomedical research, medical laboratory technology, animal and plant biotechnology, medical and veterinary diagnostics, forensics, patent law and genetic counselling, for graduates with a strong grounding in genetics.

Course Requirements
LEVEL 1
Biology or Human Biology
Chemistry
Mathematics/Statistics
Molecular Biology of the Cell
Elective

LEVEL 2
Molecular Biology
Molecular Genetics
units chosen from:
Anatomy and Human Biology
Biochemistry
Biometrics, Statistics
Forensic Science
Microbiology
Physiology
Zoology
Philosophy

LEVEL 3
Molecular Genetics and Genomics
Molecular Biology
units chosen from:
Conservation Genetics
Genetics and Evolution
Medical Genetics
Molecular Genetics in Managed and Natural Systems
Biometrics

Genetics is a fascinating area, because it gets right down to the molecular basis for life.

“Every organism on the planet has genes, and by studying genetics you are studying what makes living things tick. While this makes genetics a really interesting subject to study, it also means that the things you learn about in an undergrad genetics degree can be applied to studies in any area that involves living things.”

Whether you end up interested in curing human diseases like cancer or asthma, developing stronger food crops, or tracing the evolution of humans and other species, you will need to know plenty about genetics.

And since the language of genetics is the same all over the world, there are plenty of opportunities for postgraduate study or work overseas when you finish your degree.
Bachelor of Science (Green Chemistry)

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students), TEE Applicable Mathematics, TEE Chemistry and TEE Calculus. Students require marks of at least 80 or equivalent in all Science subjects including Mathematics.

2005 minimum TER 90.00

Intake Period February and July (a July intake is not suitable for a Mathematics major)

Weekly first-year time commitment 20 to 25 hours plus own study time

What's it about?
This is a programme for high achievers in a new and rapidly growing field of research and industrial development. ‘Green Chemistry’ (environmentally friendly chemistry) is the design, development and implementation of chemical processes and products that are not harmful to humans or the environment — ways of carrying out chemical activities without either using or generating hazardous substances. Industries embracing the principles of green chemistry often find that new processes can be both environmentally feasible and financially beneficial. Besides developing generic knowledge and skills in chemistry, this programme puts you in touch with emerging chemical technologies designed to build a sustainable future for human society worldwide.

Career Opportunities
Green chemistry issues are becoming increasingly important with respect to industrial chemical processing and environmental sustainability. Researchers are driving a fundamental shift in chemical synthesis and production for industrial applications, developing techniques that greatly reduce chemical waste and the environmental impact of chemical industries. They are also looking ahead to preferentially use renewable resources, rather than depleting traditional chemical feedstocks such as oil. Industries embracing the principles of green chemistry often find that new processes can be both environmentally feasible and financially beneficial.

Graduates will be very competitive in a wide range of careers in the chemical and allied sciences, including careers in industry, CSIRO and other government organisations, advisory and regulatory bodies, and in research and development.

Course Requirements
LEVEL 1
Chemistry
Group Project
Mathematics/Statistics
Science electives

LEVEL 2
Structure Determination and Physical Chemistry
Synthetic and Materials Chemistry
Analytical and Physical Chemistry
Biological and Medicinal Chemistry
Green Chemistry Research Project
approved electives

LEVEL 3
Green Chemistry
Chemistry in the Workplace
further options in chemistry
plus approved electives if necessary

James Crow
The reason I chose Green Chemistry was that as a student I felt that I needed to further my knowledge about the chemical industry and its effect on the environment. This unit allowed me to understand the technology currently being used and the initiatives being undertaken to make manufacturing techniques ‘benign by design’.

Currently the pharmaceuticals industry on average produces one tonne of waste to produce one kilogram of product, while plastics and petrol are still being produced from finite resources (such as oil) which will run out in the not-too-distant future.

“Green chemistry is the drive for more efficient and safe manufacturing processes and the utilisation of renewable energy sources and feedstocks (such as biomass, generally organic waste normally discarded).”

Visit the Life and Physical Sciences web site at www.science.uwa.edu.au
Bachelor of Science (Horticulture and Viticulture)

Length of course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

2005 minimum TER 80.00

Intake Period February and July

Weekly first-year time commitment 24 class hours plus own study time

What’s it about?
Horticulture and Viticulture is about understanding the growing and management of plants: trees, vines, vegetables, flowers, turf and other specialist crops such as bush foods and essential oils. Students will learn to produce quality horticultural products such as fruit, including grapes, and how to manage crops in a way that has least impact on the environment and natural ecosystems. Students will also learn how to communicate effectively with scientists, farmers and the general public.

Within this internationally-recognised degree, students may choose to pursue interests in Oenology, the science of making wine.

Career Opportunities
Graduates develop a variety of career paths: as growers and managers, as plant scientists and teachers, land care and rehabilitation managers, industry development officers, or in sales and industry services such as fertilizers, chemicals and irrigation and consulting. In addition to employment in the private sector, graduates are employable in state and federal government departments, universities, and in the winemaking industry.

Course Requirements

LEVEL 1
Biology
Chemistry
Economics
Ecosystem Processes
Mathematics

LEVEL 2
Agricultural Microbiology
Biochemistry
Biometrics
Natural Resource Economics
Physical and Chemical Aspects of Soil Science
Science and its Communication
Soil Biology and Plant Nutrition
Whole Plant Physiology
units will vary for students studying Oenology

LEVEL 3
Biometrics
Horticultural Production Systems
Plant Physiological Ecology
Science, Industry and Community
Soil Biology and Plant Nutrition
Vine Biology and Management and electives
units will vary for students studying Oenology

LEVEL 4
Horticulture and Viticulture Research Project (worth 50 per cent of your mark for fourth year)
and electives such as:
Applied Microbial Ecology
Environmental Hydrology
Genetics and Plant Breeding
Integrated Pest Management
Molecular Genetics in Managed and Natural Systems
Organic Agriculture and Horticulture
Soil Systems and Management

Jeremy Hodgson

After eight years of working, travelling and intermittent study I finally decided upon a degree that might provide me with a career.

"Winemaking seemed a wonderful balance of art and science, of the subjective and objective. The prospect of providing a lifestyle in the southwest of WA was the main impetus for my choice, not to mention the travel opportunities and hands-on work."

I chose UWA for the broad scope of the course, encompassing both viticulture and oenology, as well as the opportunity to spend a year studying at the University of Adelaide, which was a wonderful experience. As part of my honours project I sourced 200kg of Cabernet Sauvignon grapes from the Great Southern and made 18 experimental wines to examine the effect of skin contact on the colour and tannin profile of red wine. Now I can’t wait to get out into industry to start applying the theory!
Bachelor of Science (Human Science)

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

2005 minimum TER 83.00

Intake Period February and July

Weekly first-year time commitment 16 to 20 hours plus own study time

What’s it about?
What is it to be human? This programme explores biological and socio-cultural approaches that emphasise humans as whole organisms and groups. It is also concerned with the interactions between biology and culture (biobehavioural factors) and between humans and their environment (ecology). The breadth of the programme provides graduates with an understanding of the human condition that can be applied in numerous careers. This cross-disciplinary training can be complemented by expertise in a particular discipline studied as a second major within the programme (e.g. human biology, anthropology, psychology).

Career Opportunities
The dual features of the BSc (Human Science) programme provide prospective employers with highly adaptable science graduates. Graduates are eagerly sought after in a wide range of fields within government, industry and research. Areas of potential employment include the health industry, education and biomedical research.

Course Requirements
LEVEL 1
at least three of:
Anthropology
Archaeology
Earth System Science (Geography)
Human Biology
Human Movement
Linguistics
Psychology
and approved electives if necessary

LEVEL 2
units leading to at least one of the following majors:
Biological Science
Social Science
Biosocial Science
and including at least two of:
Anatomy and Human Biology
Anthropology
Archaeology
Geography
Human Movement
Linguistics
Physiology
Psychology

LEVEL 3
completion of at least one of the following majors:
Biological Science
Biosocial Science
Social Science
plus, if necessary, completion of a major in an approved science discipline, or approved electives

Susan Clifford

“The Human Science programme was exactly what I was searching for. I really enjoyed studying human biology at high school, and I wanted to learn more about the interactions between humans and their environments.”

Choosing a double major in Anatomy and Human Biology allowed me to gain a holistic understanding of humans, through studying anatomy, developmental biology, histology, human biology, reproductive biology and evolutionary theory.

I found studying for my degree to be very enjoyable and rewarding. In addition to studying fascinating topics, the lecturers were passionate and my friends and I often continued discussions long after classes had finished.

Undertaking a Human Science degree has enabled me to develop valuable skills, which have prepared me for a wide range of jobs and opportunities. Through my studies, I have learnt the skills of critical thinking, scientific analysis and clear communication, in addition to learning laboratory skills and gaining research experience. I am now completing an honours programme, which I hope will launch me into a research career, examining the effects of stress and lifestyle factors on human fertility.
Bachelor of Science (Informatics)

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and TEE Applicable Mathematics

2005 minimum TER 83.00

Intake Period February

Weekly first-year time commitment 25 hours plus own study time

Please note that this course is being restructured and some changes may be made to the 2006 programme.

What’s it about?
Informatics is the science of information processing. All disciplines acquire or generate large amounts of data because of modern technologies, and all are faced with questions of how to represent and model the data and how to use the resulting information most effectively. Besides majors in computer science and/or information technology, this programme allows you to combine your computational theory with biological sciences, in order to work in the emerging and increasingly important field of bioinformatics.

Career Opportunities
Students completing this degree can look forward to a career in a variety of areas, including computer systems administration, programming, bioinformatics in the biotechnology industry, education, and research. This is an extremely relevant and practical degree, especially with the global move towards the age of the Internet and the World Wide Web.

Course Requirements
LEVEL 1
Biology/Molecular Biology
Chemistry
Foundations of Information Technology or Foundations of Computer Science
Java Programming
Mathematics/Statistics

LEVEL 2
Bioinformatics
Data Structures and Algorithms
Object-Orientated Programming
units chosen from:
Biochemistry
Mathematics
Molecular Biology
Molecular Genetics
Computer Science Statistics
Approved Commerce units

LEVEL 3
units leading to completion of one or two of the following majors:
Bioinformatics
Computer Science
Information Technology Applications
Information Technology Systems
plus approved elective units if necessary

Michael Le Page

“ When I was young I knew that I wanted to find out more about the genetically-based syndrome I was diagnosed with at birth. Only after doing a Bioinformatics course at UWA as part of my BSc did I learn how to access and interpret the vast amount of information that is out there and relevant to me! Most of it is contained in large databases online, and who do you think designed them? ”

I have now finished my degree and look forward to postgraduate study in the field of Molecular Biotechnology — just one of the many fields hungry for the broad skill base that informaticians have: A simple online job search will give you an idea of just how many jobs there are waiting to be filled. Another thing to consider is that this field is no longer just for those who can build a computer from scratch: An array of user-friendly software programs (some reviewed in the course) is now available for public use to access needed information, place it at your fingertips and make work that much easier.
Bachelor of Science (Landscape Management)

Length of course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

2005 minimum TER 80.00

Intake Period February and July

Weekly first-year time commitment 23 hours plus own study time

What’s it about?
The Landscape Management degree is for students wanting to combine the art of landscape architecture with the science of growing and managing plants. Students in this course will learn the skills of landscape design and planning, as well as knowledge of plant and soil science for ornamental, landscape and amenity purposes and for revegetation and conservation. Landscape managers in the amenity and environmental fields, such as mine-site rehabilitation, are required due to greater concern about urban and disturbed landscapes.

Career Opportunities
When you graduate in Landscape Management you can expect to be in high demand because of your unique combination of skills in biology and design. You will find career opportunities in management, advisory or consulting positions in the private sector or local and regional governments.

Course Requirements
LEVEL 1
Biology
Chemistry
Ecosystem Processes
Landscape Architecture

LEVEL 2
Landscape Architecture
Whole Plant Physiology
and electives such as:
Aquatic Botany
Environmental Hydrology

LEVEL 3
Landscape Architecture
Land Plant Diversity and Systematics
Plants in Managed Landscapes
Soil Science
and electives such as:
Case Studies in Land and Water Management
Geographies of Cities
Industry Experience

LEVEL 4
Landscape Management Research Project (worth 50 per cent of your mark for fourth year)
and electives such as:
Integrated Pest Management
Landscape Architecture Professional Practice
Plant Environment Systems: Analysis and Simulation

Ramona Jongepier

Throughout high school I always enjoyed biology and art and design. When it came to decide what to do at the end of high school, I found it hard to choose between the two areas of study. Then I discovered the Landscape Management course at UWA. It allowed me to study both areas I was interested in!

This course has given me an understanding of landscape design and developed my knowledge of how natural and man-made landscapes function as an ecosystem. This flexible degree offers units in many areas of study, and I chose to focus on the science components in the areas of plants and soil systems.

“I like to think of this course as a kind of bridge between environmental scientists and landscape designers — filling in the communication gap by having knowledge of both areas.”

With this degree, I plan to work in the area of streetscaping and parklands — helping to develop sustainable and functional landscapes.
Bachelor of Science (Marine Science)

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

2005 minimum TER 83.00

Intake Period February and July

Weekly first-year time commitment 25 hours plus own study time

What’s it about?
Western Australia has 13,000 kilometres (8000 miles) of coastline and stretches from the tropical waters of the north to the cool temperate waters of the south coast. The State is therefore an ideal location for the study of the marine environment, and one that UWA Marine Science students take full advantage of. The Marine Science specialised programme involves studying both marine science majors — Marine Biology and Marine and Coastal Management.

The specialised programme is for students who are fascinated by all aspects of the marine and coastal environments, and who wish to learn about both aquatic life and the physical environment of marine and coastal zones. Both of the majors (Marine Biology and Marine and Coastal Management) can be pursued separately and combined with any other major in the Bachelor of Science.

Career Opportunities
Employment is to be found in government departments and agencies (e.g. Conservation and Land Management, CSIRO, Environmental Protection), tertiary institutions, consulting firms, and the fishing industry. Marine scientists work for the oil industry, in aquaculture, and for agencies such as Greenpeace. The expertise of marine scientists is also used in conjunction with other specialists working on marine environmental problems.

Course Requirements

LEVEL 1
Biology
Earth and Environmental Science
Mathematics
Chemistry or Physics

LEVEL 2
Introduction to Marine Science
Invertebrate and Vertebrate Zoology
Coastal Geomorphology and Sediments
Marine and Coastal Planning and Management
Aquatic Botany
Introduction to Geographic Information Systems

LEVEL 3
Animal Ecology
Field Techniques in Marine Science
Biological Oceanography
Physical Oceanography
Marine Geology
Environmental Geomorphology of Sheltered Coasts
plus an elective

Misty Shipway

Marine science is a fascinating and challenging field of study that is constantly expanding. For those who love the water including all of its unusual inhabitants both plant and animal, and the processes that govern these unique ecosystems, Marine Science at UWA is an exciting and rewarding course.

The first year of the course is rather generalised to give individuals experience in a range of topics from which they may discover the path they wish to take in further years of study. I chose to focus on Marine Biology which forms a specialised major under the marine science core course. This major has many compulsory units along with some choice components. The course gives students a sound theoretical and practical grounding in zoology and botany with units consisting of lectures, laboratory and field work. Other units introduce subjects such as marine and coastal systems and processes, marine ecology, aquaculture, aquatic biology and many more.

The marine environment is virtually unknown and with growing interest into our oceans, there has never been a better time to begin learning.

“ So if you’d love to work outdoors in an occupation that will be challenging and enjoyable, come to The University of Western Australia and learn all about the marine environment and its many wonders. There is so much to be discovered! ”
Bachelor of Science (Mathematical and Statistical Science)

Length of Course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and TEE Applicable Mathematics. TEE Calculus is highly recommended.

2005 minimum TER 83.00

Intake Period February

Weekly first-year time commitment 20 to 25 hours plus own study time

What's it about?
Mathematics plays a pivotal role in modern physics and chemistry. It provides the everyday working language of engineering and technology. It reaches into economics, the social and biological sciences, and in a major way (through statistics and mathematical modelling) into medicine and health studies. It is also an ever-developing field of study and research in its own right.

Career Opportunities
Mathematicians can be found working in a huge variety of places, from banks to hospitals and from mining companies to environmental protection authorities. Mathematics can lead to careers in industry, statistical consulting, defence, finance and insurance, mining and geophysics, academia and the health sciences.

Course Requirements
LEVEL 1
Mathematics
Statistics
at least two of:
Biology or Human Biology
Chemistry
Earth System Science
Physics
Psychology
Accounting
Economics

LEVEL 2
Mathematics units leading to at least one of the following majors:
Mathematical Sciences
Pure Mathematics
Mathematical Statistics
Applied Mathematics
Applied Statistics
Discrete Mathematics
Operations Research

at least one unit from:
Anatomy and Human Biology
Computer Science
Chemistry
Geography
Geology
Physics
Psychology
Microbiology
Soil Science
Zoology
Economics and Commerce

LEVEL 3
completion of one or two of the following majors:
Applied Mathematics
Applied Statistics
Discrete Mathematics
Mathematical Sciences
Mathematical Statistics
Operational Research
Pure Mathematics
and other approved units, if necessary, which may include a major in another discipline studied at Level 2.

Not many people finish school and say they want to study maths at uni. Most people who didn’t mind maths at school go on to become engineers, physicists or computer scientists. At some point in my undergrad studies I’ve fallen into all three of these categories.

As a first year, I was a BSc/BE student who thought physics and mechanical engineering were pretty cool things to do. That lasted until second semester. After that it was computer science for me, which lasted until halfway through first semester, second year. By this time I thought I’d run out of majors but discovered that somehow I had the prerequisites to do Maths.

So in third year I did just about every maths unit that didn’t involve statistics and came out with Pure and Applied Maths majors. At the end of third year, the Maths department sent out lots of letters inviting people to do honours in Maths and, for lack of any other direction in my life, I soon found myself talking to academics about research projects. A year after that people started talking about doing PhDs and that looked like fun as well.

“These days I’m a fully-fledged maths geek and it’s a pretty cool lifestyle.”

So if you are wondering what to do in your first year, do a bit of everything and start dropping out of things you don’t like. It’s a false image that only really smart geeks do Maths and PhDs. Anyone can do it and it’s lots of fun, but most people just never try.
Bachelor of Science (Molecular Biology and Biotechnology)

Length of Course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students), TEE Applicable Mathematics and TEE Chemistry

2005 minimum TER 83.00

Intake Period February and July

Weekly first-year time commitment 20 to 25 hours plus own study time

What's it about?
Molecular biology is the molecular analysis of the fundamental biological processes necessary for the maintenance, growth and reproduction of all organisms. This discipline has emerged from the traditional disciplines of genetics and biochemistry, following the discovery of DNA. The establishment of the central doctrine of molecular biology — which explains the flow of information from DNA (the storage of information) to proteins (molecular machines that carry out work) — provides a basis to study, dissect and understand all biological processes. This fundamental approach in the life sciences, agricultural and biomedical sciences is helping us to understand how all organisms interact with the environment to grow and reproduce.

Career Opportunities
As a fundamental science, molecular biology provides graduates with a variety of career options. As well as the obvious research positions in universities, public (e.g. CSIRO) and private (e.g. biotech industries) research organisations, graduates are actively recruited in various management, administrative and legal professions. Molecular biology is also an underlying science for environmental and biodiversity careers.

Course Requirements
LEVEL 1
Biology/Molecular Biology
Chemistry
Mathematics
approved Elective

LEVEL 2
Biochemistry
Bioinformatics
Molecular Biology
units from the following:
Chemistry
Microbiology
Molecular Genetics
Physiology

LEVEL 3
units leading to the completion of a double major in molecular biology, comprising:
Molecular Biology
and at least two of:
Molecular Biology Project
Molecular Genetics and Genomics
Molecular and Structural Biochemistry
Mammalian Cell Biology
Biological Chemistry
Metals in Biological Chemistry
and if necessary, approved units relevant to Molecular Biology

Bachelor of Molecular Biology
Required Specialised Programme/Major: BSc (Molecular Biology) including high marks in specified Level 3 units.
This is a fourth-year, research-intensive course for BSc graduates planning a career in molecular biology. Students undertake a major research project, a minor research project in molecular biology or molecular genetics, and a sequence of specialist studies. The programme is individually tailored to allow students to gain varied research experience and also to pursue their particular interests in topics selected from a wide field. The course is especially relevant to those who intend to go on to a research career in molecular biology, either through postgraduate studies or in a research position in private or public research organisations. Students are required to have a weighted average of 75 per cent in two specific units and a weighted average of 65 per cent in their Level 3 units to be eligible for the course. Visit: www.microbiol.uwa.edu.au

Visit the Life and Physical Sciences web site at www.science.uwa.edu.au
Bachelor of Science (Nanotechnology)

Length of Course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students), TEE Applicable Mathematics and TEE Chemistry. TEE Physics and TEE Calculus are highly recommended and are prerequisites for some streams

2005 minimum TER 83.00

Intake Period February

Weekly first-year time commitment 20 to 25 hours plus own study time

What’s it about?
This new programme sets out to explore and manipulate reality at the molecular level. Students will be introduced to the basic theory and applications of Nanotechnology in the biological and chemical sciences and in physics, and will focus on one or two of those broad areas as they progress through the course. Topics covered will include applications in materials and electronic engineering, photonics, microscopy and microanalysis. Nanotechnology is widely recognised as a key technology that will drive economic growth and standards of living in the 21st century. The knowledge, skills and practical techniques developed in this course will put you at the cutting edge of industrial development.

Career Opportunities
Nanotechnologists will move into careers primarily in research and development in the medical or pharmaceutical industries, in renewable energy, new materials and new manufacturing techniques across the whole range of industries or in university or government research institutions. The career opportunities are as varied and limitless as the field itself. Industries/research areas seeking to apply nanotechnology include:
- Smart drugs
- Targeted drug delivery systems
- Nanopowders for application in paints, sunscreen, film coatings etc.
- Nanostructured chemical components (e.g. for catalysts, lab-on-a-chip, etc.)
- Quantum computers
- High-speed electronics
- Advanced optoelectronics

Course Requirements
The activities covered by Nanotechnology are broad, encompassing the disciplines of biology, biochemistry, chemistry, ecology, engineering, materials science, mathematics, physics and more.

Students are able to specialise in the following streams:
Chemistry
Biology
Physics
Engineering Science

LEVEL 1

core units
Biology
Nanotechnology
Mathematics
Physics
Chemistry

LEVELS 2 and 3

units from the following areas in order to fulfil the requirements of the student’s chosen major stream:
Chemistry
Biology
Physics
Engineering Science

Shannan Maisey

Nanotechnology is one of those words that’s thrown around a lot but you’re not quite sure what it means. Here’s a chance for you to find out. While the Nanotechnology course is in its infancy at UWA, the level of enthusiasm and expertise by those that teach it grabs you in and gets you hooked. What I understood about Nanotechnology before I started was not a lot; science on a really small scale.

The beauty of this field of science is that it encapsulates every spectra of the scientific world. From chemistry to engineering, biomedics and physics each of these disciplines are co-dependent for the development of new technology. So if you’re like me and know you like science but not quite sure what field, nanotech offers a veritable smörgåsbord of choice and variety.

"The best part of studying Nanotechnology at UWA is the availability of resources to ensure hands-on learning, such as the brand new microscopy lab. What I find most appealing however is the underlying principle behind Nanotechnology to protect the future and our environment by developing new ways to make technology not only better but ensuring sustainability and efficiency."
Bachelor of Science (Natural Resource Management)

Length of course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

2005 minimum TER 80.00

Intake Period February and July

Weekly first-year time commitment 24 hours plus own study time

What’s it about?
This internationally-recognised course of study is designed for students with a strong interest and capability in science and a commitment to conserving natural resources. Natural Resource Management places a strong emphasis on policy for the management of natural resources and for balancing their many uses.

The course develops principles of resource management and students graduate with the flexibility to contribute to the management of natural resources in any part of the world. These include resources of land, water, plants, forests, wildlife and aquatic plants and animals. Graduates gain skills in communication and in the principles for the sensible and reasoned resolution of conflict between the demands of conservation, economic use, human habitation and lifestyles, and sustainability of our resources.

Career Opportunities
Employment opportunities for graduates in natural resource management exist within the wide range of industries which depend on natural resources and within organisations which research and manage these resources. Examples include the forestry, fishing and pastoral industries, and state and federal government departments responsible for land management.

Course Requirements

LEVEL 1
Biology
Chemistry
Ecosystem Processes
Economics
Mathematics

LEVEL 2
Biometrics
Introduction to Ecology
Introduction to Geographic Information Systems
Natural Resource Economics
Physical and Chemical Aspects of Soil Science
Science and its Communication
Whole Plant Physiology

LEVEL 3
Biometrics
Environmental Law and Policy
Natural Resource Economics
Science, Industry and Community

LEVEL 4
Natural Resource Management Research Project (worth 50 per cent of your mark for fourth year)
and electives such as:
Animal Ecology
Integrated Pest Management
Introduction to Geochemistry
Molecular Genetics in Managed and Natural Systems
Wildlife Conservation and Management

Tennille Graham

I always knew I would attend university, but I never thought it would involve travel, working with top researchers, influencing how the world thinks and having fun at the same time! When choosing a potential university courses during Year 12, I knew I had an interest in how the environment and humans interact. As the name suggests the NRM degree at UWA was the key to pursuing this interest.

“During my degree I learnt a wide range of topics from soil science to natural resource economics, visited old growth forests and mining stations, and attended the faculty balls.”

Apart from the wide exposure you receive during the course, the degree allows you to major in an area, and I discovered I had a passion for how economics can change the management of the environment. In my fourth year I completed my honours project on the management of a water resource catchment in south Western Australia. Currently I am pursuing a PhD in economic policy and the management of dryland salinity.

The NRM degree gave me the stepping stones to exciting career prospects and to situations I never thought I would experience.
Bachelor of Science (Neuroscience)

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics; TEE Chemistry and TEE Physics desirable

2005 minimum TER 83.00

Intake Period February

Weekly first-year time commitment 20 to 25 hours plus own study time

Quota restriction: This programme is quota-restricted. It requires a weighted average of at least 65 per cent in the core units for entry to the second and third years.

What’s it about?

Neuroscience is the scientific study of nervous systems, from the molecules that make up individual nerve cells, and the transfer of information between nerve cells, to the complexities of how behaviour, thoughts and feelings are produced. It makes use of methods and investigations from a wide range of traditional disciplines including anatomy, molecular biology, psychiatry, physiology, pharmacology, psychology and zoology. Students learn how the brain functions normally and how it malfunctions in mental disorders (e.g. schizophrenia, depression and drug addiction) in neurological disorders (e.g. Parkinson’s and Alzheimer’s disease), or after brain injury.

Career Opportunities

Most students studying neuroscience plan to go on to advanced degrees in Neuroscience (honours and PhD), which can lead to academic or industrial teaching/research or research only positions in universities, hospitals, medical research institutes or in industrial research (biotechnology or pharmaceutical industries). Other study options include advanced degrees in medicine via the non-standard postgraduate entry route. Students who terminate their studies with a BSc (Neuroscience) degree often go into laboratory research.

Course Requirements

LEVEL 1
Chemistry
Psychology
Biology or Human Biology
Molecular Biology of the Cell
Mathematics or Physics

LEVEL 2
Neurobiology
Molecular Biology
Physiology
Psychology
and units leading to one of the following majors:
Anatomy and Human Biology
Biochemistry
Biophysics
Genetics
Microbiology
Pathology
Pharmacology
Psychology
Psychological Studies
Zoology

LEVEL 3
Neuroscience and Advanced Neuroscience
Comparative Neurobiology
and units chosen from:
Anatomy and Human Biology
Biochemistry
Biophysics
Genetics
Microbiology
Pathology
Pharmacology
Psychology
Psychological Studies
Zoology

Andrew Garrett

“Close your eyes and point to a door or window — seems a pretty easy task doesn’t it? How did you know where the door was when you couldn’t see it? How did you know which muscles to move in order to point to the door? All these actions were controlled by your brain and nervous system.”

Neuroscience is the study of the brain and nervous system, how it works to keep you alive and interact with the everyday environment.

By studying Neuroscience I learnt many things ranging from how nerve cells grow and repair when damaged, through to how addictive substances act to keep you ‘hooked’. In some units we were placed right at the forefront of neuroscience research, learning theories that can be less than a year old!

At the end of my undergraduate degree I was able to work in a laboratory that specialised in auditory research. This led to me becoming interested in how people hear and I completed an honours degree following on from my work experience. Overall I have found studying a challenging yet rewarding experience.
Bachelor of Science (Physical Science)

Length of course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and TEE Applicable Mathematics, TEE Chemistry and/or TEE Physics. TEE Calculus is a prerequisite for some majors

2005 minimum TER 83.00

Intake Period February

Weekly first-year time commitment 20 to 25 hours plus own study time

What’s it about?
Chemistry, geology and physics make up the physical sciences. These most fundamental of sciences provide the basis for our understanding of the complex world about us, from cosmological scales to sub-nuclear scales, from the interplay of atoms and molecules to the collisions of continental plates. Through addressing fundamental questions about the natural processes in the universe and on planet Earth, these sciences drive the development of new technologies.

Career Opportunities
BSc (Physical Science) graduates enjoy a wide range of career options, including computational science, aerospace engineering, remote sensing, research and development strategies, geophysics, medical physics, teaching, astronomy, atomic and molecular processes, laser physics, electronics, robotics, engineering, artificial intelligence, telecommunications, astrophysics, space science, the mineral industry, agriculture and in industries related to the development of modern materials and nanotechnology.

Course Requirements
LEVEL 1
Mathematics/Statistics and at least two of:
Chemistry
Earth System Science (Geology)
Physics
and approved electives if necessary

LEVEL 2
units leading to at least the following majors:
Chemistry/Materials Chemistry
Geology
Mathematics
Physics
Chemical Physics

LEVEL 3
completion of one or two of the following majors:
Chemical Physics
Chemistry
Geology
Materials Chemistry
Mathematics
Physics
and, if necessary, other approved units in a relevant area

“Among other work, I am currently undertaking interesting forensic research regarding the spattering of blood on leather shoes at murder scenes.”

Simon Osborne

As the end of Year 12 drew near, I didn’t really have much of a plan for what to do at university. I seemed to enjoy physics and chemistry, so I looked for a course that would combine the two, assuming that I would choose one of them when I got in deeper. As it turned out, I’m in my third year and I still can’t decide between them. The Bachelor of Science (Physical Science) is great as it allows me to study both chemistry and physics in tandem, giving me a much broader understanding of the overlapping topics, as well as throwing in some interesting extras that I wouldn’t have learnt studying one or the other.

The Bachelor of Science (Physical Science) programme provides a plethora of interesting units and topics that help to expand one’s understanding of how the universe functions and why things are the way they are.
Bachelor of Science (Psychology)

Bachelor of Arts (majoring in Psychology)

Length of Course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students). Any TEE Mathematics is a prerequisite for the BSc.

2005 minimum TER BSc 83.00 BA 82.00

Intake Period February and July

Weekly first-year time commitment 24 hours plus own study time

Also available as a Bachelor of Science (majoring in Psychological Studies)

What’s it about?
Psychology is a fascinating and wide-ranging discipline that touches many aspects of daily life; an understanding of how people think, feel, perceive and act may be relevant to many areas of study, and to many different careers. The Psychology units at Level 1 have wide appeal for students preparing for a range of different careers, as they provide a broad overview of complex areas such as personality, motivation, social behaviour and human development. Weekly laboratory tutorials feature experiments and the interpretation of results. The second and subsequent years of study are much more focused and challenging, and reflect the strong biological and sociological aspects of the discipline.

Students wishing to study Psychology for general educational purposes, or in preparation for an occupation in which an understanding of human nature is valuable, such as teaching or social work, are best advised to undertake a three-year Bachelor of Arts (BA) or Bachelor of Science (BSc) degree course.

Students wishing to combine the study of other humanities subjects with their study of Psychology should undertake the BA; those who wish to combine science subjects such as human biology should undertake the BSc (Psychology).

Course Requirements

LEVEL 1
Psychology: Mind and Brain
Psychology: Behaviour in Context
and other arts or science units

LEVEL 2
Cognitive, Social and Abnormal Development
Psychological Research Methods
Psychological Science: Theory, Research and Practice
Psychology: Human Information Processing
and other arts or science units

Two years of further training and supervised experience are required for full registration as a psychologist.

LEVEL 3
Abnormal Psychology
Developmental Psychology
Perception and Neuroscience
Psychology of Cognition
Research Design and Analysis
Social Psychology
Specialist Research Topics

LEVEL 4
There are two alternative ways in which a fourth year may be completed:
- by honours or;
- by the Bachelor of Psychology (BPsych)

Career Opportunities
Psychology graduates may experience considerable flexibility in terms of employment. Their expertise with social survey methods, computer technology and sophisticated measurement techniques equips them admirably for areas like market research, advertising, and the media. Government agencies, welfare work, teaching, educational and research institutions and private sector agencies are all prospective employers. Professional positions in psychology are competitively pursued with a minimum requirement of a four-year degree, and an increasing demand for higher qualifications.

By my second-last year of high school I had narrowed my career interests down to something science-related and something where I would be working closely with other people. When I came across a Psychology stand at a student information night in Year 12 it seemed to be the perfect combination of both. Still, it was a scary decision to make — to pick a path of study that might shape the rest of my life.

“**When I discovered that I would be able to achieve a Psychology degree through a Bachelor of Science at UWA it seemed like the best way to go. I would have the opportunity to take Psychology in my first year, but if I didn’t like it I could always major in something else. Luckily for me I loved it.**”

Psychology is much more than I ever imagined. I have chosen to pursue a career in Organisational Psychology and am currently completing a combined master’s in Organisational Psychology and PhD.

There is a great demand for businesses to receive evidence-based advice about how to improve human performance, and Organisational Psychology has provided me with the opportunity to work with many interesting people including healthcare professionals, fire fighters, submarine crews and miners.

Visit the Arts, Humanities and Social Sciences web site at www.arts.uwa.edu.au and the Life and Physical Sciences web site at www.science.uwa.edu.au
Bachelor of Science
(Science Education)

Length of Course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

2005 minimum TER 83.00

Intake Period February

Weekly first-year time commitment 20 to 25 hours plus own study time

What’s it about?
This programme is for those students who are interested in a career in teaching or science communication. Opportunities exist to participate in the University’s peer tutoring programme and to participate in a science communication project. During the course you will study physics, chemistry, mathematics and another science subject, together with communication units to hone your writing, presentation and research skills in an area which interests you. The research units provide opportunities to work with State Government agencies and industry on promotional and research projects.

Students who complete the course will be encouraged to apply for the Graduate Diploma in Education to obtain a professional teaching qualification.

Career Opportunities
Teachers in physical sciences and mathematics are in strong demand, both locally and overseas, and after completing your Graduate Diploma you can be sure of a rewarding career.

If you change your mind about teaching, there are career opportunities in museums, government-funded organisations, science and technology industries and in the media.

Course Requirements
LEVEL 1
core units
Physics
Mathematics
Chemistry
Biology

LEVEL 2
core units
Science Communication Writing
Science Communication Talking
Mathematics and
Physics
Chemistry
Electives

LEVEL 3
core units
Communication Special Topics
Communication Science Communication Strategies and
Physics
Mathematics
Chemistry

Nina Boeing

Like most people, I had no idea what I wanted to do after high school, and to keep my options open, I chose the classic combination of Maths, Physics, Chemistry and Biology in first year. I stumbled upon Biophysics in second year, loved it, and went on to do my honours in it. Biophysics is the physics of biological processes, and is a nice balance between biology and physics. The School of Physics is a very friendly and helpful close-knit community, in which the staff are always willing to help.

I decided to enrol in a Graduate Diploma of Education after I spent three years in the workforce, and realised that sitting in a lab or in front of a computer all day was not for me.

“Combining science with education allows you to make use of your scientific skills outside of the academic world, and can lead you into a career in teaching.”

Teaching is such a wonderful experience, and the School of Education is a warm and caring environment. The Graduate Diploma of Education course provides you with the theories of teaching, and gives you opportunities to practise and develop your own teaching strategies, to suit your personality.

A teaching degree, especially in the areas of physical science and maths, will give you many job prospects within Australia, and also give you the opportunity to teach overseas.
Bachelor of Science (Agricultural Economics)

Length of Course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

Intake Period February and July

Weekly first-year time commitment 24 hours plus own study time

Please note: this course is subject to approval by the Academic Council

What’s it about?
The agricultural industry is the second biggest export industry in Western Australia. Graduates who understand the science behind agriculture but also have a strong background in economics will be in high demand, as decisions made in the industry must be economically viable.

This is an applied economics degree which gives students a training in microeconomics and quantitative methods which will allow them to analyse issues and problems in agriculture. The degree includes scope to undertake science options through all four years. This recognises that many issues require an interdisciplinary knowledge which combines natural and social sciences.

Career Opportunities
Agricultural economists are currently employed by government (e.g. Department of Agriculture) and the agricultural sector, including agricultural merchants (e.g. Elders, Wesfarmers), grain traders and banks (e.g. BankWest). Employment in international business is also an option for graduates with a desire to expand their horizons.

Bachelor of Science (Biology)

Length of Course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

Intake Period February and July

Weekly first-year time commitment 24 hours plus own study time

Please note: this course is subject to approval by the Academic Council

What’s it about?
This course is ideal for anyone who would rather have a broad background in biology instead of a specialisation. If you're unsure of exactly what you want to study, or know that you have very broad interests, this is the course for you! Graduates of this course will be in demand for their broad understanding of the biological sciences, and will also be able to proceed into postgraduate training in Australia as well as overseas.

An exciting element of this course is the fourth-year research project, in which you will perform research in an area of interest to you. You will also take part in a seminar series, in which you will discuss scientific papers with researchers. These components of the course will allow you to develop your skills in science, while also exposing you to the incredible breadth of the biological sciences!

Career Opportunities
Biology graduates are employed in pure and applied research positions in both private sector companies and public agencies such as CSIRO, museums and government departments e.g. Conservation and Land Management (CALM), State Fisheries, the Water and Rivers Commission, the Department of Environmental Protection, as well as in school, college and university teaching.

Bachelor of Science (Environmental and Natural Resource Economics)

Length of Course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

Intake Period February and July

Weekly first-year time commitment 24 hours plus own study time

Please note: this course is subject to approval by the Academic Council

What’s it about?
Many issues in environmental science require a solid understanding of economics in order to solve the problems faced by a growing population. Therefore there is a strong need for graduates who can combine their understanding of science with economics.

This is an applied economics degree which gives students a training in microeconomics and quantitative methods which will allow them to analyse issues and problems in environment and natural resource management. The degree includes scope to undertake science options through all four years.

Career Opportunities
Environmental economists are currently employed by government (e.g. Department of the Environment, Land and Water Australia, CSIRO) and the resource sector (e.g. BHP Billiton), as well as private companies. Graduates will also be employable internationally, helping to solve environmental problems worldwide.

Bachelor of Science (Genetics and Breeding)

Length of Course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

Intake Period February and July

Weekly first-year time commitment 24 hours plus own study time

Please note: this course is subject to approval by the Academic Council

What’s it about?
This course is designed for anyone with a broad interest in genetics, especially those who would like to apply that interest to the fields of plant and animal breeding. The course will give you a solid grounding in the disciplines of genetics and molecular genetics, and how these techniques are applied to the theory and practice of modern breeding and conservation.
During the final year students will be involved in a major research project in the area of genetics and breeding, worth 50 per cent of the mark for the year.

Career Opportunities
Graduates with a specialisation in genetics and breeding are employed in pure and applied research positions in both private sector companies and public agencies such as CSIRO, government departments e.g. Conservation and Land Management (CALM), Department of Agriculture Western Australia, botanic gardens, State Fisheries, as well as in school, college and university teaching.

Bachelor of Science (Geochemistry)

Length of course: 3 years

Entry Requirement: TEE English or TEE English Literature (or ESL for eligible students), TEE Chemistry and TEE Applicable Mathematics

Intake period: February and July

Weekly first-year time commitment: 24 hours plus own study time

Please note: this course is subject to approval by the Academic Council

What's it about?
This course focuses on chemical principles in all fields of earth sciences such as ore and rock formation, the behaviour of contaminants in the subsurface, chemical analysis of water, rocks and soils and others. Its application ranges from ore exploration and environmental contamination to chemical analysis and forensics. It is ideal for anyone seeking a career in a myriad of fields which use chemical principles to understand and solve problems relating to the interaction of humans and the earth.

Graduates of this course will be in demand for their broad understanding of chemical interaction of earth materials (rocks, soils, fluids and atmosphere) as related to human activities, and the chemical understanding of these materials.

Career Opportunities
Geochemistry graduates are currently in demand in a range of fields, primarily based around the resources and environmental sectors. Employers of geochemists include private companies (e.g. Woodside), museums, CSIRO, universities and government agencies.

Bachelor of Science (Geology and Resource Economics)

Length of Course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

Intake Period February and July

Weekly first-year time commitment 24 hours plus own study time

Please note: this course is subject to approval by the Academic Council

What's it about?
Anyone who wants to work in a natural resource field will benefit greatly from combining their scientific knowledge with expertise in economics, as decisions about natural resources are frequently made from an economic perspective. This course allows you to combine your geology studies with economics, and complete your degree in only four years. This unique combination of skills will make graduates especially attractive to employers.

Graduates will study geology and geological processes in depth, including field trips to the northwest, south coast and Eastern Goldfields of Western Australia.

During the final year students will be involved in a major research project which will combine geological and economic studies of a natural resource.

Career Opportunities
Graduates will be qualified to follow careers in either geoscience or natural resource economics, and particularly at the interface between the two disciplines. The dominant role of natural resources in the Western Australian economy ensures many opportunities locally, while your broad training will also qualify you for positions both interstate and internationally. Likely employers include large and small petroleum and mining companies, e.g. Woodside, WMC Resources, and state and federal government agencies.

Bachelor of Science (Land Rehabilitation)

Length of Course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

Intake Period February and July

Weekly first-year time commitment 24 hours plus own study time

Please note: this course is subject to approval by the Academic Council

What's it about?
This course is for students interested in environmental science, with a particular interest in rehabilitation of minesites and disturbed environments such as contaminated land, urban land and wetlands. This course will teach you how to develop management strategies to restore damaged environments and how to monitor environments during their restoration. The course integrates the fields of soil science, geology and geography. The course includes links to people in industry to solve practical problems.

Career Opportunities
Graduates of this course will have skills and knowledge relevant to the mining industry, and therefore have broad employment opportunities within this industry and related environmental areas. Other employers will include Conservation and Land Management, the Department of the Environment, and environmental consulting companies, including those involved in environmental planning.

Visit the Natural and Agricultural Sciences web site at www.fnas.uwa.edu.au
Bachelor of Science (Plant Genomics)

Length of Course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

Intake Period February and July

Weekly first-year time commitment 24 hours plus own study time

Please note: this course is subject to approval by the Academic Council

What's it about?
Genomics is an exciting new area of science that uses information about the sequence and structure of an organism's genes to study how the organism works. The Plant Genomics degree will give you a thorough understanding of genes, their products and how these interact to make a plant function. You will also see how this information can be utilised to provide innovative solutions to problems in areas such as medicine, environmental management and agriculture. Research in this area has already been used to improve the nutritional quality of rice and show why some plants survive salt stress better than others. One of the highlights of the degree programme is the final-year research project in your chosen area of plant genomics that gives you the opportunity to apply the skills you have learned.

Career Opportunities
Plant Genomics graduates are employed in pure and applied research positions in both private sector companies (Biotechnology companies) and public agencies such as CSIRO, government departments e.g. Department of Agriculture WA, Conservation and Land Management (CALM), State Fisheries, the Department of Environment, the Department of Agriculture and CSIRO; natural resource management and landcare groups; as well as university research and teaching in this exciting, emerging area of science.

Bachelor of Science (Wildlife Management)

Length of Course 4 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

Intake Period February and July

Weekly first-year time commitment 24 hours plus own study time

Please note: this course is subject to approval by the Academic Council

What's it about?
Wildlife management incorporates both science and management of wild animals, both rare and common species. Threatened species may require particular knowledge of population structure and processes for effective management. Common species may need control or might be exploited as novel production products.

Career Opportunities
Wildlife management graduates are employed in both private sector companies (Biotechnology companies) and public agencies such as the Department of Environment, the Department of Agriculture and Conservation and Land Management (CALM), as well as in school, college and university teaching.

A BSc (Restoration Ecology) provides access to a variety of careers in a growing field with government agencies including Conservation and Land Management (CALM), State Fisheries, the Department of Environment, the Department of Agriculture and CSIRO; natural resource management and landcare groups as well as university research and teaching in this exciting, emerging area of science.

Bachelor of Science (Restoration Ecology) — Albany Campus Only

Length of Course 3 years

Entry Requirements TEE English or TEE English Literature (or ESL for eligible students) and any TEE Mathematics

Intake Period February and July

Weekly first-year time commitment 24 hours plus own study time

Please note: this course is subject to approval by the Academic Council

What's it about?
This course is ideal for anyone interested in a career that is concerned not just with conserving our natural environment, but also with restoring and rehabilitating damaged ecosystems. It will go beyond asking the question ‘How did we get into this hole?’ to ask, ‘How do we get out of it?’ (Lunt, 2001). The degree encompasses the restoration and rehabilitation of both land and water ecosystems and examines the social, economic and political factors that shape restoration/rehabilitation problems and their solutions.

A unique feature of the programme is its location in Albany on the south coast of WA, which provides a range of environments for field-based studies as well as opportunities for project placements with local agencies and community groups.

Career Opportunities
Employment opportunities will primarily be in government agencies, e.g. CALM, or in private, environmental consulting groups.
Diplomas

What is a diploma?

A diploma is a qualification that you can study alongside your degree. It allows you to complete a single major sequence in a subject not offered by your degree. As there are many options for combining majors and degrees at UWA, you should ask the Prospective Students Office if you will need to enrol in a diploma to cover your interests.

How do I apply to study a diploma?

Only currently-enrolled UWA students can study towards a diploma. Once you have been accepted into a UWA course, you should indicate your wish to study a diploma in addition to your degree at enrolment day.

Your faculty may recommend that you commence your diploma studies in your second year at UWA.

Students studying combined courses are usually unable to also enrol in a diploma.

How long does it take to study a diploma?

Because you study your diploma concurrently with your degree, your course structure will be altered to allow you time to complete both qualifications. This means that usually it will take you one year (or part-time equivalent) longer to complete both qualifications.

What diplomas are available?

Diploma in Arts
The Diploma in Arts is designed for students in other courses who would like to include some study of the humanities. Units are studied concurrently with a degree programme.

Diploma in Information Technology
The Diploma in Information Technology is designed for students enrolled in most undergraduate degrees in the University who wish to complement those studies with some understanding of Information Technology. It consists of a sequence of study in programming, information technology and other topics which may include, for example, software engineering or computer graphics.

Diploma in Modern Languages
The Diploma in Modern Languages is designed for students in other courses who would like to study a foreign language. The languages available are Chinese, French, German, Indonesian, Italian and Japanese.

Diploma in Music
The Diploma in Music is designed for students who are enrolled in degrees outside the Faculty of Arts, Humanities and Social Sciences, but who wish to undertake Music studies. There are two streams in the diploma:

Creative Stream
- Practical Studies
- Music Technology
- Music Techniques
- Composition Studies

Performance Stream
- Music Performance
- Music Technology
- Music Techniques
- Music Pedagogy

Students must pass an audition to gain entry into the Diploma in Music.
Courses and majors index

Accounting (Financial and Managerial) 35, 36
Advanced Science 65
Agricultural Economics 92
Agriculture 66
Agriculture/Commerce 32, 34, 66, 92
Agriculture/Economics 33, 34, 66, 67
Anatomy and Human Biology 61
Ancient History 19, 22
Animal Science 67
Anthropology 19, 21, 61
Applied Mathematics (see Mathematics) 33-34
Applied Ocean Science 43, 45
Archeology 19, 21, 61
Architecture 16
Arts 19-25
Arts (Asian Studies)/Commerce 20, 22, 26, 32
Arts (Asian Studies)/Economics 20, 22, 26, 33
Arts (Asian Studies)/Engineering 20, 22, 26, 43
Arts (Asian Studies)/Law 20, 22, 26, 50
Arts (Communication Studies)/Commerce 20, 27, 32
Arts (Communication Studies)/Economics 20, 27, 33
Arts (Communication Studies)/Engineering 20, 27, 43
Arts (Communication Studies)/Law 20, 27, 50
Arts/Commerce 19-20, 32
Arts/Economics 19-20, 33
Arts/Education 19-20, 39
Arts/Engineering 19-20, 43
Arts/Law 19-20, 50
Arts/Medicine and Surgery 19-20, 57
Arts/Music 19-20, 30
Arts/Science 19-20, 59, 92
Asian Business 34, 37
Asian Languages 21
Asian Studies 19-20, 22, 26
Biochemistry 61
Biology 92
Biomedical Science 68
Biophysics 69
Biophysics 61, 69
Botany 61
Cell Physiology (see Physiology) 64
Chemical Physics (see Chemistry) 61
Chemistry (see also Green Chemistry) 61, 67
Chinese 19, 21, 26
Civil Engineering 41, 45
Classics and Ancient History 19, 22
Commerce 32-37
Commerce/Computer and Mathematical Sciences 32, 34, 40, 49
Commerce/Computer Science 32, 34, 41, 49
Commerce/Education 32, 34, 39
Commerce/Health Science 32, 34, 55
Commerce/Law 32, 34, 50
Commerce/Science 32, 34, 59, 92
Communication Studies — Arts 19-20, 27
Communication Studies — Science 70
Computer and Mathematical Sciences 40
Computer and Mathematical Sciences/ Economics 33-34, 40, 49
Computer and Mathematical Sciences/ Engineering 40, 43, 49
Computer Science 41, 61
Computer Science/Economics 31-34, 41, 49
Computer Science/Engineering 41, 43, 49
Computer Science/Science (Geophysics) 41, 60
Computer Science 61
Conservation Biology 71
Conservation Biology and Management 72
Dentistry 52-53
Earth Science 73
Economic History 37
Economics 22, 33-37
Economics (Quantitative) 37
Economics/Education 33-34, 39
Economics/Engineering 33-34, 43
Economics/Health Science 33-34, 55
Economics/Law 33-34, 50
Economics/Science 33-34, 59, 92
Education 38-39
Education/Science 39, 59, 92
Electrical and Electronic Engineering 43, 46
Electronic Business 35
Engineering 42-49
Engineering/Science 43, 45, 59, 92
English 63, 19, 22
Environmental and Natural Resource Economics 92
Environmental Chemistry (see Chemistry) 61
Environmental Design 16
Environmental Engineering 43, 46
Environmental Geoscience 61
Environmental Microbiology 63
Environmental Science 74
European Languages 22, 28, 75
European Studies 19, 23, 28
Exercise and Health Science 76
Exercise Rehabilitation Science 59, 76
Finance (Corporate, Investment, Quantitative) 35
Financial Accounting 35
Fine Arts 17, 19, 23
French 19, 23, 28, 75
Genetics 62, 77
Genetics and Breeding 92
Geocchemistry 93
Geography 19, 23, 62
Geology 62
Geology and Resource Economics 93
Geophysics 60
German 19, 23, 28, 75
Greek (part of Classics and Ancient History major) 19, 22
Green Chemistry 78
Health Science 54-55
Health Sciences/Law 50-51, 55
Health Science/Music 20, 29-30, 55
History 19, 23
Horticulture and Viticulture 79
Human Movement 62
Human Resource Management 35
Human Science 80
Indonesian 19, 21, 26
Industrial Relations 19, 23, 36
Informatics 81
Information Management 36
Information Technology Applications (see Computer Science) 41, 62
Information Technology Engineering 43, 46
Information Technology Systems (see Computer Science) 41, 62
International Business Economics 37
Italian 19, 23, 28, 75
Japanese, Japanese Studies 19, 21, 26
Law and Water Management 62
Land Rehabilitation 93
Landscape Architecture 18
Landscape Management 82
Latin (part of Classics and Ancient History major) 19, 22
Microbiology 63
Medical Science 79
Medicine 56-57
Music Education 30
Musical Arts 30
Natural Resource Management 87
Neuroscience 88
Offshore Engineering and Naval Architecture 43, 48
Oil and Gas Engineering 43, 48
Pathology 64
Petroleum Engineering 43, 48
Pharmacology 19, 24
Physics 64
Physiology 64
Podiatry 56
Process Engineering 43, 49
Psychology 31
Psychological Studies 19, 25, 64, 90
Pure Mathematics (see Mathematics) 63
Quantitative Economics 37
Restoration Ecology 12, 94
Science 58-64
Science Education 91
Science European 59-75
Social Work 31
Software Engineering 43, 49
Soil Science 64
Surgery 57
Viticulture 79
Wildlife Management 94
Women’s Studies 19, 25
Zoology 64

Combined courses are listed alphabetically, (e.g. Arts/Law, Commerce/Engineering)